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We reconsider theories with low gravitational (or string) scale M∗ where Newton’s constant is
generated via new large-volume spatial dimensions, while Standard Model states are localized to a 3-
brane. Utilizing compact hyperbolic manifolds (CHM’s) we show that the spectrum of Kaluza-Klein
(KK) modes is radically altered. This allows an early universe cosmology with normal evolution up to
substantial temperatures , and completely negates the constraints on M∗ arising from astrophysics.
Furthermore, an exponential hierarchy between the usual Planck scale and the true fundamental
scale of physics can emerge with only O(1) coefficients. The linear size of the internal space remains
small. The proposal has striking testable signatures.
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Recent work [1–4] has heralded a renewed interest in
higher-dimensional space-times, a key new concept being
the localization of matter, and even gravity, to branes
embedded in the extra dimensions [5]. In the canonical
example of [2], space-time is a direct product of ordinary
4D space-time and a (flat) spatial d-torus of common lin-
ear size R and volume Vnew = Rd, while Standard Model
particles are localized on a 3-brane of thickness ∼ M−1

∗ ,
where M∗ is the new fundamental higher-dimensional
gravitational (or string) scale. The low energy effective
4D Planck scale MP is then given by the Gauss’s Law re-
lation, M2

P = M2+d
∗ Rd. The hierarchy between MP and

M∗ can be very large if RM∗ � 1. For example, if d = 2
and R ∼ mm, then M∗ ∼ TeV. The hierarchy MP/TeV
thus becomes a problem of understanding the size of the
extra dimensions in such a model [6].

Remarkably, models with R approaching the sub-
millimeter range are not excluded [7], but astrophysics
and cosmology do place significant bounds. In particu-
lar, the evolution of the early universe at temperatures
just above those at the epoch of Big Bang Nucleosynthe-
sis (BBN) is inevitably, and dramatically altered. This
narrow range of normal evolution prior to BBN makes it
difficult to implement baryogenesis, moduli dilution etc.

The most important model-independent constraints on
such models arise from the production of light KK modes
of the graviton. These KK modes are the eigenmodes of
the appropriate Laplace operator ∆ on the internal space,
and it is of central importance in the following that all the
constraints depend on the form of the spectral density of
this operator, which in turn depends completely on the
topology and geometry of the internal space.

In this letter we argue that attractive alternate
choices of compactification imply significantly weaker
constraints, admitting in particular a standard 4D
Friedmann-Robertson-Walker (FRW) evolution up to
high temperatures. These compactifications employ a

topologically non-trivial internal space— a d-dimensional
compact hyperbolic manifold (CHM). They also throw
into a new light the problem of explaining the large hi-
erarchy MP /TeV, since even though the volume of these
manifolds is large, their linear size L is only slightly larger
than the new fundamental length scale (L ∼ 30M−1

∗ for
example), thus only requiring numbers of O(10).

CHM’s are obtained from Hd, the universal covering
space of hyperbolic manifolds (those admitting constant
negative curvature), by modding out by an appropriate
freely acting discrete subgroup Γ of the isometry group
of Hd [8]. (If Γ is not freely-acting, then the resulting
quotient is a non-flat non-smooth orbifold. We will not
discuss this interesting case here.) These manifolds have
been much discussed recently as the possible structure
of ordinary 3-space [9], and play an important role in
the theory of classical and quantum “chaotic” systems,
where the spectra of Laplacian operators are also vital
[10]. Here we will consider space-times of the form M4×
(Hd/Γ|free) (M4 is a FRW 4-manifold) with metric

GIJdzIdzJ = g(4)
µν (x)dxµdxν + R2

cg
(d)
ij (y)dyidyj . (1)

Here Rc is the physical curvature radius of the CHM, so
that gij(y) is the metric on the CHM normalized so that
its Ricci scalar is R = −1, and µ = 0, . . . , 3, i = 1, . . . , d.

Because they are locally negatively curved, CHM’s ex-
ist only for d ≥ 2. Their properties are well understood
only for d ≤ 3; however, it is known that CHM’s in di-
mensions d ≥ 3 possess the important property of rigidity
[11]. As a result, these manifolds have no massless shape
moduli. Moreover, the volume of the manifold, in units of
the curvature radius Rc, cannot be changed while main-
taining the homogeneity of the geometry. Hence, the sta-
bilization of such internal spaces reduces to the problem of
stabilizing a single modulus, the curvature length or the
“radion”. Of course, in a complete high-energy theory,
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(e.g. string theory), there will be massive O(M∗) excita-
tions of the would-be shape moduli, and more important
for the constraints, the massive KK modes.

To uncover the physics of these models one must con-
sider the spectrum of small fluctuations h in the metric
around the background eq. (1), GIJ → GIJ +eip.xhIJ(y).
There are 3 different types of KK fluctuations that so
arise: hµν , the spin-2 piece; hij , with indices only in
the internal directions, giving spin-0 fields for the 4D ob-
server; and the mixed case hiµ, giving spin-1 4D fields.
The 4D KK masses of these states are the eigenvalues of
the appropriate internal-space Laplacians acting on h(y),
the correct Laplacian differing between these 3 cases.
In the most important spin-2 case the operator is the
Laplace-Beltrami operator ∆LB (the Laplacian on scalar
functions in the internal space), defined by

∆LBφ(y) = |g(y)|−1/2∂i

(
|g(y)|1/2gij∂jφ(y)

)
. (2)

There are no known analytic expressions for the indi-
vidual eigenvalues of ∆LB on a CHM of any dimension.
However, despite the extremely complicated topology
and geometry of CHM’s with arbitrarily large volume,
a number of simple facts are generally true. First, by a
variational argument, the spectrum of ∆LB is bounded
from below, and the lowest eigenmode is just the constant
function on the CHM. This zero mode is the internal
space wave-function of the massless spin-2 4D graviton.
As it is a constant, the effective 4D Planck mass depends
only on the volume of the (highly curved) internal space.

For example, suppose that the internal space was a 3-
sphere of radius r, cut out of an H3 of curvature radius
Rc. Its volume Vol(r) grows exponentially for r � Rc,

Vol(r) = πR3
c [sinh(2r/Rc)− 2r/Rc] . (3)

In general, the total volume of a smooth compact hyper-
bolic space in any number of dimensions is

Volnew = Rd
c eα , (4)

where α is a constant, determined by topology. (For d = 3
it is known that there is a countable infinity of orientable
CHM’s, with dimensionless volumes, eα, bounded from
below, but unbounded from above. Moreover, the eα

do not become sparsely distributed with large volume.)
In addition, because the topological invariant eα char-
acterizes the volume of the CHM, it is also a measure
of the largest distance L around the manifold. CHM’s
are globally anisotropic; however, since the largest linear
dimension gives the most significant contribution to the
volume, one can employ eq. (3), or its generalizations to
d 6= 3, to find an approximate relationship between L
and Volnew. For L � Rc/2 the appropriate asymptotic
relation, dropping irrelevant angular factors, is

eα ' exp
(
(d− 1)L/Rc

)
. (5)

Thus, in strong contrast to the flat case, the expression
for MP depends exponentially on the linear size,

M2
P = M2+d

∗ Rd
ce

α = M2+d
∗ Rd

c exp
(
(d− 1)L/Rc

)
. (6)

The most interesting case (and as we will see later,
most reasonable) is the smallest possible curvature ra-
dius, Rc ∼ M−1

∗ . Taking M∗ ∼ TeV then yields

L ' 35M−1
∗ = 10−15mm . (7)

Therefore, one of the most attractive features of a CHM
internal space is that to generate an exponential hierar-
chy between M∗ ∼ TeV, and MP requires only that the
linear size L be very mildly tuned.

We now return to the important topic of the non-zero
eigenmodes of ∆LB on CHM’s, and to the astrophysical
and cosmological implications of these KK modes. Re-
call that in flat models, the KK modes are extremely
light, mKK ≥ R−1 ≥ 10−4eV, and very numerous,
NKK ' M2

P /M2∗ ≤ 1032 [2]. As a result, even though
these modes are individually only weakly coupled, with
strength 1/MP , they can be copiously produced by en-
ergetic processes on our brane, and observational limits
then constrain the fundamental scale. The tightest astro-
physical constraint comes from supernova physics, lead-
ing to a lower bound of M∗ ≥ 50TeV if d = 2, and of
M∗ ≥ 3TeV for d = 3 [7,12]. There are also severe limits
on the maximum temperature (the “normalcy tempera-
ture” T∗) above which the evolution of the universe must
be non-standard [7]. This temperature is found by equat-
ing the rates for cooling by the usual process of adiabatic
expansion, and by the new process of evaporation of KK
gravitons into the bulk. This gives T∗ ≤ 10 MeV for
d = 2, up to T∗ ≤ 10 GeV when d = 6. As we will now
see, for us the situation is much improved.

First, by the compactness of the internal space, the
spectrum of ∆LB on a CHM is discrete and has a gap
between the zero mode and the first excited KK state.
The size of this gap is all important. Second, most of
the eigenmodes of ∆LB on a CHM have wavelengths less
than Rc, and the number density of these modes is well
approximated by the usual Weyl asymptotic formula

n(k) = (2π)−dΩ(d−1)Vdk
d−1 , (8)

where Ω(d−1) = Area(Sd−1). There can also be a few
lighter supercurvature modes, with wavelengths as large
as the longest linear distance in the manifold, and masses
thus bounded below by L−1. There is no simple expres-
sion for the spectral density of supercurvature modes, al-
though the Selberg trace formula provides some informa-
tion on the full spectrum of ∆LB. Nevertheless bounds
on the first non-zero eigenvalue are known. In the best-
studied CHM case of d = 2 we have the following theorem
[13]: Consider a compact (oriented) Riemann surface Sg

of arbitrary genus g ≥ 2, with metric of constant negative
curvature -1. Then for every ε, there exists N ∈ Z+ such
that for g > N there exists an Sg with first eigenvalue

λ1(Sg) ≥ (C − ε) , (9)
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where C ≥ 171/784 by earlier work [13]. Restoring units,
a large enough volume (and thus genus) d = 2 CHM will
have first eigenvalue ≥ 171/(784R2

c). Moreover, Brooks
has conjectured that for d = 2 a typical CHM chosen at
random will have first eigenvalue ≥ 1/4R2

c with positive
probability P , perhaps even with P → 1 as the genus
g → ∞ [14]. The analogous conjecture in d = 3 is more
problematic, but has also been made [14]. Numerical
studies of the spectra of even small volume d = 3 CHM’s
show that they have very few modes with λ < Rc [15].

The crucial result is that the first KK modes are ex-
ponentially more massive than the very light mKK ≥
1/V 1/d found in the flat case. This drastically raises the
threshold for their production. Even making the pes-
simistic assumption that the spectral density of the su-
percurvature modes satisfies eq. (8) for k > 1/L, the
astrophysical bounds of [7] and [12] completely disappear
since the lightest KK mode has a mass (at least 30 GeV),
much greater than the temperature of even the hottest
astrophysical object. Similarly the large KK masses im-
ply a much higher normalcy temperature T∗, up to which
the evolution of our brane-localized 4D universe can be
normal radiation-dominated FRW. Approximate numer-
ical evaluation shows that T∗ is understandably sensi-
tive to the gap to the first non-zero KK mass, rang-
ing from 2 GeV to 10 GeV (for d = 2 to d = 6) if
mKK,1 ' 1/L ' TeV/35, and from 20 GeV to 40 GeV if
mKK,1 ' TeV/2 as suggested by the Brooks conjecture.
(In all cases taking M∗ = 1 TeV. Raising M∗ raises T∗.)

So far we have concentrated on the spectrum of ∆LB

appropriate for the spin-2 KK excitations. What about
the spin-0(1) excitations? In both cases the detailed form
of the Laplacian is modified. For example, in the spin-0
case the correct operator is the Liechnerowicz Laplacian,

(∆LLh)ij = −(DkDkhij + Rikjlh
kl), (10)

where Di is the covariant derivative. The Mostow-Prasad
rigidity theorem for CHM’s of dimension d ≥ 3 tells us
that ∆LL has no zero modes. Although we know of no
rigorous bounds for the first eigenvalue of this operator,
an inspection of the generalized Selberg trace formulae
supports the conjecture that the gap is of similar size
to the Laplace-Beltrami case, a result that is physically
reasonable. Finally for the spin-1 fluctuations hiµ recall
that these zero modes would correspond to KK gauge-
bosons (the original motivation of Kaluza and Klein!),
and are directly related to the continuous isometries of
the compact space. But, as a result of the quotient by
Γ, CHM’s have no such isometries, and thus there are
no massless KK gauge bosons. The non-zero KK modes
once again have a mass gap that is at least as large as
1/L and is more likely close to ∼ 1/Rc, as in the previous
cases. Thus these additional types of fluctuation do not
disturb our estimates.

We have not yet addressed why it is almost automatic
that there exist solutions of the form of eq. (1). Since
CHM’s are just quotients of Hd by a discrete identifica-
tion under Γ ⊂ Isom(Hd), it is possible to find solutions

of our form whenever there exists a uniform negative
bulk cosmological constant (CC), given one constraint:
Rc ∼ M−1∗ and eα ' exp ((d− 1)L/Rc) � 1 must be re-
alized consistently with our ansatz of a factorizable geom-
etry with a static internal space, together with the vanish-
ing of the 4D long-distance (� L) CC. To ensure a static
internal space, the small curvature radius of the internal
space must be balanced in the field equations by the bulk
CC, Λ4+d ∼ M4+d∗ . Both these quantities contribute to
the effective long-distance 4D CC, Λ4, on our brane, and
typically do not cancel. Furthermore, one cannot just set
Λ4 to zero by adjusting the tension or energy density f4

of our 3-brane, because this requires f4 �M4∗ , violating
our basic assumption that a low-energy effective theory
is valid on the brane (and perturbing the geometry, pos-
sibly destroying our assumption that it is factorizable).
To address this problem we must examine the form of
the total 4D potential energy density V , which in the ef-
fective theory depends only on Rc (eα is an invariant),
and which arises from the dimensional reduction of the
full bulk and brane actions [6].

For a 3-brane embedded in (4+d) dimensions, the bulk
and brane actions are respectively:

Sbulk =
∫

d4+dx
√
−|g(4+d)|

(
Md+2

∗ R+ Λ− Lm

)
(11)

Sbrane=
∫

d4x
√
−|ginduced

(4) |
(

f4 + . . .

)
, (12)

where Lm is the bulk matter field Lagrangian. Reduction
of these actions gives a 4D potential energy density of the
form

V (Rc) = ΛRd
ce

α −M4
∗ eα(M∗Rc)d−2 + W (Rc) , (13)

to which we must add the brane tension f4. The first
two terms arise from the (4 + d) bulk CC term, and the
curvature of the internal space. Now consider expanding
W (Rc), which comes from Lm, as a Laurent series in Rc

W (Rc) =
∑

p

ap
M4

∗
(RcM∗)p

, (14)

with dimensionless coefficients ap. (Gauge or scalar field
kinetic energies can give such terms with p > 0 [6].) If
the determination of the minimum is dominated by a
competition between any two terms in V , then at this
minimum V ≡ Vmin 6= 0. Moreover, Vmin is enhanced by
eα over the “natural” value M4∗ . However, the vanishing
of the 4D CC demands Vmin|tot = 0. This cannot be
achieved by adjusting the brane tension such that |f4| ≤
M4

∗ .
Fortunately there is an attractive alternative. If three

or more Rc-dependent terms in V (Rc) are all impor-
tant at the minimum (for example the CC and curvature
terms, and one of the matter terms from W ) then we
can tune the coefficients ap such that Vmin = 0, without
needing f4 � M4

∗ . Thus, our basic assumptions remain
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consistent. Moreover, this tuning is particularly natu-
ral in our case precisely because we want the minimum
to occur for a curvature radius close to the fundamen-
tal scale Rc ∼ M−1

∗ , at which we expect the high-scale
theory to produce many different terms that contribute
roughly in an equal way. (This is exactly the opposite
situation from the large flat extra dimension case where
the minimum has to occur at a length scale much greater
than M−1∗ .) This one fine-tuning is just the usual 4d CC
problem, about which we have nothing to add.

Having shown that there do exist solutions of our form,
another significant result follows from this analysis. The
most severe problem bedeviling the usual large extra di-
mension scenario is the radion moduli problem in the
early universe [16]. In our case this problem is much
weakened. The radion, which is the light mode corre-
sponding to dilations of the internal space, gets its mass
from the stabilizing potential V (Rc). Generally, in the
flat extra dimension scenario, the radion mass mr is of
size M2

∗/MP ' 10−3 eV, so that it is very easily excited
during the exit from inflation. Furthermore, since its cou-
plings are 1/MP suppressed, its life-time is longer than
the age of the universe, so that it would unacceptably
dominate our current expansion. In our case, however,
the radion mass is greatly increased because the second
derivative of the potential at its minimum is enhanced
by a factor of eα, V ′′

min = O(eαM6
∗ ). Thus

m2
r =

1
2

R2
cV

′′(Rc)
eαMd+2∗ Rd

c

' 1
R2

c

, (15)

which is close to M2∗ ∼ TeV2. Therefore, the radion
lifetime is T ∼ M2

P /M3
∗ , much shorter than in the case of

flat extra dimensions, and only slightly longer than the
age of the universe at nucleosynthesis, even if M∗ ∼ TeV.
Moreover, it is (comparatively) easy to dilute away any
unwanted radion oscillations by a period of late inflation.

While cosmologically and astrophysically much safer,
models with internal compact hyperbolic spaces do have
testable signatures accessible to collider experiments.
Since KK modes abound close to the fundamental scale,
Standard Model particle collisions with center-of-mass
energies near this scale will result in the production of
KK particles, detectable by a distinctive missing energy
signature [17]. Although this is qualitatively similar to
the scenario of [3], the spectrum of KK modes one will see
is quite distinctive. While the scale of KK masses is set
by R−1

c , their ratios and multiplicities are in almost one-
to-one correspondence with the topology of the internal
manifold [18]. A full exploration of these experimental
signatures will require a more complete investigation of
the spectrum of large CHM’s, in particular the issues of
isospectrality and homophonicity of such manifolds. It
is quite likely that such CHM’s have other implications
for higher-dimensional physics. Besides a more detailed
study of the question of radion stabilization, effects such
as wavefunction scarring [10] and brane-manifold dynam-
ics are currently under investigation.
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