4,862 research outputs found

    Mechanical and SEM analysis of artificial comet nucleus samples

    Get PDF
    Since 1987 experiments dealing with comet nucleus phenomena have been carried out in the DFVLR space simulation chambers. The main objective of these experiments is a better understanding of thermal behavior, surface phenomena and especially the gas dust interaction. As a function of different sample compositions and exposure to solar irradiation (xenon-bulbs) crusts of different hardness and thickness were measured. The measuring device consists of a motor driven pressure foot (5 mm diameter), which is pressed into the sample. The applied compressive force is electronically monitored. The microstructure of the crust and dust residuals is investigated by scanning electron microscopy (SEM) techniques. Stress-depth profiles of an unirradiated and an irradiated model comet are given

    Thermodynamic curvature measures interactions

    Full text link
    Thermodynamic fluctuation theory originated with Einstein who inverted the relation S=kBlnΩS=k_B\ln\Omega to express the number of states in terms of entropy: Ω=exp(S/kB)\Omega= \exp(S/k_B). The theory's Gaussian approximation is discussed in most statistical mechanics texts. I review work showing how to go beyond the Gaussian approximation by adding covariance, conservation, and consistency. This generalization leads to a fundamentally new object: the thermodynamic Riemannian curvature scalar RR, a thermodynamic invariant. I argue that R|R| is related to the correlation length and suggest that the sign of RR corresponds to whether the interparticle interactions are effectively attractive or repulsive.Comment: 29 pages, 7 figures (added reference 27
    corecore