24 research outputs found

    Local density of states induced by anisotropic impurity scattering in a d-wave superconductor

    Full text link
    We study a single impurity effect on the local density of states in a d-wave superconductor accounting for the momentum-dependent impurity potential. We show that the anisotropy of the scattering potential can alter significantly the spatial dependence of the quasiparticle density of states in the vicinity of the impurity.Comment: 8 pages, revtex4, 14 figure

    Effect of anisotropic impurity scattering on a density of states of a d-wave superconductor

    Full text link
    We discuss the effect of an anisotropic impurity potential on the critical temperature, local density of states in the vicinity of a single impurity, and the quasiparticle density of states for a finite impurity concentration in a d-wave superconductor. Different scattering regimes are concerned.Comment: 3 pages, revtex4, 4 figure

    The Critical Temperature of an Anisotropic Superconductor in the Presence of a Homogeneous Magnetic Field and Impurities

    Full text link
    The effect of a homogeneous magnetic field and nonmagnetic impurities on the critical temperature of an anisotropic superconductor has been investigated. The role of these pair-breakers in relation to the anisotropy of the order parameter is clarified.Comment: 7 pages, RevTeX, 1 PostScript figur

    Combined potential and spin impurity scattering in cuprates

    Full text link
    We present a theory of combined nonmagnetic and magnetic impurity scattering in anisotropic superconductors accounting for the momentum-dependent impurity potential. Applying the model to the d-wave superconducting state, we obtain a quantitative agreement with the initial suppression of the critical temperature due to Zn and Ni substitutions as well as electron irradiation defects in the cuprates. We suggest, that the unequal pair-breaking effect of Zn and Ni may be related to a different nature of the magnetic moments induced by these impurities.Comment: 5 pages, 3 tables, RevTex, to be published in Phys. Rev.

    Weak anisotropic impurity scattering in unconventional superconductors

    Full text link
    The effect of weak anisotropic (momentum-dependent) impurity scattering in unconventional superconductors has been investigated. It is shown that the anisotropic scattering can lead either to a small reduction or a small enhancement of the isotropic pair-breaking effect. The influence of the anisotropy of the scattering potential becomes significant for the order parameters with large Fermi surface average values. In that case an unexpected enhancement (up to 10%) of the critical temperature over the critical temperature in the absence of impurities is predicted for a small impurity concentration.Comment: 12 pages, RevTeX, 3 PostScript figure

    Isotope effect in impure high T_c superconductors

    Full text link
    The influence of various kinds of impurities on the isotope shift exponent \alpha of high temperature superconductors has been studied. In these materials the dopant impurities, like Sr in La_{2-x}Sr_xCuO_4, play different role and usually occupy different sites than impurities like Zn, Fe, Ni {\it etc} intentionally introduced into the system to study its superconducting properties. In the paper the in-plane and out-of-plane impurities present in layered superconductors have been considered. They differently affect the superconducting transition temperature T_c. The relative change of isotope shift coefficient, however, is an universal function of T_c/T_{c0} (T_{c0} reffers to impurity free system) {\it i.e.} for angle independent scattering rate and density of states function it does not depend whether the change of T_c is due to in- or out-of-plane impurities. The role of the anisotropic impurity scattering in changing oxygen isotope coefficient of superconductors with various symmetries of the order parameter is elucidated. The comparison of the calculated and experimental dependence of \alpha/\alpha_0, where \alpha_0 is the clean system isotope shift coefficient, on T_c/T_{c0} is presented for a number of cases studied. The changes of \alpha calculated within stripe model of superconductivity in copper oxides resonably well describe the data on La_{1.8}Sr_{0.2}Cu_{1-x}(Fe,Ni)_xO_4, without any fitting parameters.Comment: 8 pages, 6 figures, Phys. Rev. B67 (2003) accepte

    Effect of anisotropic impurity scattering in superconductors

    Full text link
    We discuss the weak-coupling BCS theory of a superconductor with the impurities, accounting for their anisotropic momentum-dependent potential. The impurity scattering process is considered in the t-matrix approximation and its influence on the superconducting critical temperature is studied in the Born and unitary limit for a d- and (d+s)-wave superconductors. We observe a significant dependence of the pair-breaking strength on the symmetry of the scattering potential and classify the impurity potentials according to their ability to alter T_c. A good agreement with the experimental data for Zn doping and oxygen irradiation in the overdoped cuprates is found.Comment: 31 pages, RevTex, 15 PostScript figure

    Role of anisotropic impurity scattering in anisotropic superconductors

    Full text link
    A theory of nonmagnetic impurities in an anisotropic superconductor including the effect of anisotropic (momentum-dependent) impurity scattering is given. It is shown that for a strongly anisotropic scattering the reduction of the pair-breaking effect of the impurities is large. For a significant overlap between the anisotropy functions of the scattering potential and that of the pair potential and for a large amount of anisotropic scattering rate in impurity potential the superconductivity becomes robust vis a vis impurity concentration. The implications of our result for YBCO high-temperature superconductor are discussed.Comment: 14 pages, RevTeX, 5 PostScript figures, to be published in Phys. Rev. B (December 1, 1996

    Magnetic-Field Variations of the Pair-Breaking Effects of Superconductivity in (TMTSF)2ClO4

    Full text link
    We have studied the onset temperature of the superconductivity Tc_onset of the organic superconductor (TMTSF)2ClO4, by precisely controlling the direction of the magnetic field H. We compare the results of two samples with nearly the same onset temperature but with different scattering relaxation time tau. We revealed a complicated interplay of a variety of pair-breaking effects and mechanisms that overcome these pair-breaking effects. In low fields, the linear temperature dependences of the onset curves in the H-T phase diagrams are governed by the orbital pair-breaking effect. The dips in the in-plane field-angle phi dependence of Tc_onset, which were only observed in the long-tau sample, provides definitive evidence that the field-induced dimensional crossover enhances the superconductivity if the field direction is more than about 19-degrees away from the a axis. In the high-field regime for H//a, the upturn of the onset curve for the long-tau sample indicates a new superconducting state that overcomes the Pauli pair-breaking effect but is easily suppressed by impurity scatterings. The Pauli effect is also overcome for H//b' by a realization of another state for which the maximum of Tc_onset(phi) occurs in a direction different from the crystalline axes. The effect on Tc_onset of tilting the applied field out of the conductive plane suggests that the Pauli effect plays a significant role in determining Tc_onset. The most plausible explanation of these results is that (TMTSF)2ClO4 is a singlet superconductor and exhibits Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states in high fields.Comment: 12 pages, 10 figures. To be published in J. Phys. Soc. Jpn. (vol.77, 2008

    Magnetic field effects on the density of states of orthorhombic superconductors

    Full text link
    The quasiparticle density of states in a two-dimensional d-wave superconductor depends on the orientation of the in-plane external magnetic field H. This is because. in the region of the gap nodes, the Doppler shift due to the circulating supercurrents around a vortex depend on the direction of H. For a tetragonal system the induced pattern is four-fold symmetric and, at zero energy, the density of states exhibits minima along the node directions. But YBa_2C_3O_{6.95} is orthorhombic because of the chains and the pattern becomes two-fold symmetric with the position of the minima occuring when H is oriented along the Fermi velocity at a node on the Fermi surface. The effect of impurity scattering in the Born and unitary limit is discussed.Comment: 24 pages, 11 Figure
    corecore