10,036 research outputs found
Precision Measurements of Stretching and Compression in Fluid Mixing
The mixing of an impurity into a flowing fluid is an important process in
many areas of science, including geophysical processes, chemical reactors, and
microfluidic devices. In some cases, for example periodic flows, the concepts
of nonlinear dynamics provide a deep theoretical basis for understanding
mixing. Unfortunately, the building blocks of this theory, i.e. the fixed
points and invariant manifolds of the associated Poincare map, have remained
inaccessible to direct experimental study, thus limiting the insight that could
be obtained. Using precision measurements of tracer particle trajectories in a
two-dimensional fluid flow producing chaotic mixing, we directly measure the
time-dependent stretching and compression fields. These quantities, previously
available only numerically, attain local maxima along lines coinciding with the
stable and unstable manifolds, thus revealing the dynamical structures that
control mixing. Contours or level sets of a passive impurity field are found to
be aligned parallel to the lines of large compression (unstable manifolds) at
each instant. This connection appears to persist as the onset of turbulence is
approached.Comment: 5 pages, 5 figure
Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows
When an integrable two-degrees-of-freedom Hamiltonian system possessing a
circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It
is proved that its occurrence is generic for one parameter families
(co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical
experiments indicate that the motion near a parabolic resonance exhibits new
type of chaotic behavior which includes instabilities in some directions and
long trapping times in others. Moreover, in a degenerate case, near a {\it flat
parabolic resonance}, large scale instabilities appear. A model arising from an
atmospherical study is shown to exhibit flat parabolic resonance. This supplies
a simple mechanism for the transport of particles with {\it small} (i.e.
atmospherically relevant) initial velocities from the vicinity of the equator
to high latitudes. A modification of the model which allows the development of
atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities
are clearly observed
Friction Drag on a Particle Moving in a Nematic Liquid Crystal
The flow of a liquid crystal around a particle does not only depend on its
shape and the viscosity coefficients but also on the direction of the
molecules. We studied the resulting drag force on a sphere moving in a nematic
liquid crystal (MBBA) in a low Reynold's number approach for a fixed director
field (low Ericksen number regime) using the computational artificial
compressibility method. Taking the necessary disclination loop around the
sphere into account, the value of the drag force anisotropy
(F_\perp/F_\parallel=1.50) for an exactly computed field is in good agreement
with experiments (~1.5) done by conductivity diffusion measurements. We also
present data for weak anchoring of the molecules on the particle surface and of
trial fields, which show to be sufficiently good for most applications.
Furthermore, the behaviour of the friction close to the transition point
nematic isotropic and for a rod-like and a disc-like liquid crystal will be
given.Comment: 23 pages RevTeX, including 3 PS figures, 1 PS table and 1 PS-LaTeX
figure; Accepted for publication in Phys. Rev.
Flow and magnetic structures in a kinematic ABC-dynamo
Dynamo theory describes the magnetic field induced by the rotating, convecting and electrically conducting fluid in a celestial body. The classical ABC-flow model represents fast dynamo action, required to sustain such a magnetic field. In this letter, Lagrangian coherent structures (LCSs) in the ABC-flow are detected through Finite-time Lyapunov exponents (FTLE). The flow skeleton is identified by extracting intersections between repelling and attracting LCSs. For the case A = B = C = 1, the skeleton structures are made up from lines connecting two different types of stagnation points in the ABC-flow. The corresponding kinematic ABC-dynamo problem is solved using a spectral method, and the distribution of cigar-like magnetic structures visualized. Inherent links are found to exist between LCSs in the ABC-flow and induced magnetic structures, which provides insight into the mechanism behind the ABC-dynamo
Blocking-state influence on shot noise and conductance in quantum dots
Quantum dots (QDs) investigated through electron transport measurements often
exhibit varying, state-dependent tunnel couplings to the leads. Under specific
conditions, weakly coupled states can result in a strong suppression of the
electrical current and they are correspondingly called blocking states. Using
the combination of conductance and shot noise measurements, we investigate
blocking states in carbon nanotube (CNT) QDs. We report negative differential
conductance and super-Poissonian noise. The enhanced noise is the signature of
electron bunching, which originates from random switches between the strongly
and weakly conducting states of the QD. Negative differential conductance
appears here when the blocking state is an excited state. In this case, at the
threshold voltage where the blocking state becomes populated, the current is
reduced. Using a master equation approach, we provide numerical simulations
reproducing both the conductance and the shot noise pattern observed in our
measurements.Comment: 10 pages, 7 figure
Aperiodic dynamical decoupling sequences in presence of pulse errors
Dynamical decoupling (DD) is a promising tool for preserving the quantum
states of qubits. However, small imperfections in the control pulses can
seriously affect the fidelity of decoupling, and qualitatively change the
evolution of the controlled system at long times. Using both analytical and
numerical tools, we theoretically investigate the effect of the pulse errors
accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G.
S. Uhrig, Phys. Rev. Lett. {\bf 98}, 100504 (2007)], and the Quadratic DD (QDD)
protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\bf 104},
130501 (2010)]. We consider the implementation of these sequences using the
electron spins of phosphorus donors in silicon, where DD sequences are applied
to suppress dephasing of the donor spins. The dependence of the decoupling
fidelity on different initial states of the spins is the focus of our study. We
investigate in detail the initial drop in the DD fidelity, and its long-term
saturation. We also demonstrate that by applying the control pulses along
different directions, the performance of QDD protocols can be noticeably
improved, and explain the reason of such an improvement. Our results can be
useful for future implementations of the aperiodic decoupling protocols, and
for better understanding of the impact of errors on quantum control of spins.Comment: updated reference
Post-traumatic stress disorder in parturients delivering by caesarean section and the implication of anaesthesia: a prospective cohort study.
Post-traumatic stress disorder (PTSD) occurs in 1-7% of women following childbirth. While having a caesarean section (C-section) is known to be a significant risk factor for postpartum PTSD, it is currently unknown whether coexisting anaesthesia-related factors are also associated to the disorder. The aim of this study was to assess anaesthesia-linked factors in the development of acute postpartum PTSD.
We performed a prospective cohort study on women having a C-section in a tertiary hospital in Switzerland. Patients were followed up six weeks postpartum. Patient and procedure characteristics, past morbidity or traumatic events, psychosocial status and stressful perinatal events were measured. Outcome was divided into two categories: full PTSD disease and PTSD profile. This was based on the number of DSM-IV criteria of the Diagnostic and Statistical Manual of Mental Disorders 4th edition (DSM-IV) present. The PTSD Checklist Scale and the Clinician Administered PTSD Scale were used for measurement.
Of the 280 patients included, 217 (77.5%) answered the questionnaires and 175 (62.5%) answered to an additional phone interview. Twenty (9.2%) had a PTSD profile and six (2.7%) a PTSD. When a full predictive model of risk factors for PTSD profile was built using logistic regression, maternal prepartum and intrapartum complications, anaesthetic complications and dissociative experiences during C-section were found to be the significant predictors for PTSD profile.
This is the first study to show in parturients having a C-section that an anaesthesia complication is an independent risk factor for postpartum PTSD and PTSD profile development, in addition to known perinatal and maternal risk factors
Gribov Problem for Gauge Theories: a Pedagogical Introduction
The functional-integral quantization of non-Abelian gauge theories is
affected by the Gribov problem at non-perturbative level: the requirement of
preserving the supplementary conditions under gauge transformations leads to a
non-linear differential equation, and the various solutions of such a
non-linear equation represent different gauge configurations known as Gribov
copies. Their occurrence (lack of global cross-sections from the point of view
of differential geometry) is called Gribov ambiguity, and is here presented
within the framework of a global approach to quantum field theory. We first
give a simple (standard) example for the SU(2) group and spherically symmetric
potentials, then we discuss this phenomenon in general relativity, and recent
developments, including lattice calculations.Comment: 24 pages, Revtex 4. In the revised version, a statement has been
amended on page 11, and References 14, 16 and 27 have been improve
Non-abelian plane waves and stochastic regimes for (2+1)-dimensional gauge field models with Chern-Simons term
An exact time-dependent solution of field equations for the 3-d gauge field
model with a Chern-Simons (CS) topological mass is found. Limiting cases of
constant solution and solution with vanishing topological mass are considered.
After Lorentz boost, the found solution describes a massive nonlinear
non-abelian plane wave. For the more complicate case of gauge fields with CS
mass interacting with a Higgs field, the stochastic character of motion is
demonstrated.Comment: LaTeX 2.09, 13 pages, 11 eps figure
- …