1,014 research outputs found

    On the Connection Between Momentum Cutoff and Operator Cutoff Regularizations

    Full text link
    Operator cutoff regularization based on the original Schwinger's proper-time formalism is examined. By constructing a regulating smearing function for the proper-time integration, we show how this regularization scheme simulates the usual momentum cutoff prescription yet preserves gauge symmetry even in the presence of the cutoff scales. Similarity between the operator cutoff regularization and the method of higher (covariant) derivatives is also observed. The invariant nature of the operator cutoff regularization makes it a promising tool for exploring the renormalization group flow of gauge theories in the spirit of Wilson-Kadanoff blocking transformation.Comment: 28 pages in plain TeX, no figures. revised and expande

    Renormalization Group Flow Equations and the Phase Transition in O(N)-models

    Get PDF
    We derive and solve flow equations for a general O(N)-symmetric effective potential including wavefunction renormalization corrections combined with a heat-kernel regularization. We investigate the model at finite temperature and study the nature of the phase transition in detail. Beta functions, fixed points and critical exponents \beta, \nu, \delta and \eta for various N are independently calculated which allow for a verification of universal scaling relations.Comment: 34 pages, 3 tables, 11 postscript figures, LaTe

    Gluon Condensation in Nonperturbative Flow Equations

    Get PDF
    We employ nonperturbative flow equations for an investigation of the effective action in Yang-Mills theories. We compute the effective action Γ[B]\Gamma[B] for constant color magnetic fields BB and examine Savvidy's conjecture of an unstable perturbative vacuum. Our results indicate that the absolute minimum of Γ[B]\Gamma[B] occurs for B=0. Gluon condensation is described by a nonvanishing expectation value of the regularized composite operator FμνFμνF_{\mu\nu}F^{\mu\nu} which agrees with phenomenological estimates.Comment: 64 pages, late

    Male water striders attract predators to intimidate females into copulation

    Get PDF
    Despite recent advances in our understanding of sexual conflict and antagonistic coevolution between sexes, the role of interspecific interactions, such as predation, in these evolutionary processes remains unclear. In this paper, we present a new male mating strategy whereby a male water strider Gerris gracilicornis intimidates a female by directly attracting predators as long as she does not accept the male's coercive copulation attempt. We argue that this male strategy is a counteradaptation to the evolution of the female morphological shield protecting her genitalia from coercive intromission by water strider males. The G. gracilicornis mating system clearly represents an effect expected from models of the coevolutionary arms race between sexes, whereby one sex causes a decrease in the fitness component of the other sex. Moreover, our study demonstrates a crucial role that interspecific interactions such as predation can have in the antagonistic coevolution between sexes

    Inhomogeneous Field Configurations and the Electroweak Phase Transition

    Full text link
    We investigate the effects of inhomogeneous scalar field configurations on the electroweak phase transition. For this purpose we calculate the leading perturbative correction to the wave function correction term Z(\vph,T), i.e., the kinetic term in the effective action, for the electroweak Standard Model at finite temperature and the top quark self--mass. Our finding for the fermionic contribution to Z(\vph,T) is infra--red finite and disagrees with other recent results. In general, neither the order of the phase transition nor the temperature at which it occurs change, once Z(\vph,T) is included. But a non--vanishing, positive (negative) Z(\vph,T) enhances (decreases) the critical droplet surface tension and the strength of the phase transition. We find that in the range of parameter space, which allows for a first--order phase transition, the wave function correction term is negative --- indicating a weaker phase transition --- and especially for small field values so large that perturbation theory becomes unreliable.Comment: 23 pages of LaTeX + 3 PostScript figures included in uuencoded form, FERMI-PUB-93/253-

    Lorentz and CPT Violating Chern-Simons Term in the Derivative Expansion of QED

    Full text link
    We calculate by the method of dimensional regularization and derivative expansion the one-loop effective action for a Dirac fermion with a Lorentz-violating and CPT-odd kinetic term in the background of a gauge field. We show that this term induces a Chern-Simons modification to Maxwell theory. Some related issues are also discussed.Comment: 6 pages, no figure, RevTex, A revised versio

    Quantum Kinks: Solitons at Strong Coupling

    Full text link
    We examine solitons in theories with heavy fermions. These ``quantum'' solitons differ dramatically from semi-classical (perturbative) solitons because fermion loop effects are important when the Yukawa coupling is strong. We focus on kinks in a (1+1)(1+1)--dimensional Ď•4\phi^4 theory coupled to fermions; a large-NN expansion is employed to treat the Yukawa coupling gg nonperturbatively. A local expression for the fermion vacuum energy is derived using the WKB approximation for the Dirac eigenvalues. We find that fermion loop corrections increase the energy of the kink and (for large gg) decrease its size. For large gg, the energy of the quantum kink is proportional to gg, and its size scales as 1/g1/g, unlike the classical kink; we argue that these features are generic to quantum solitons in theories with strong Yukawa couplings. We also discuss the possible instability of fermions to solitons.Comment: 21 pp. + 2 figs., phyzzx, JHU-TIPAC-92001

    Deriving Non-decoupling Effects of Heavy Fields from the Path Integral: a Heavy Higgs Field in an SU(2) Gauge Theory

    Get PDF
    We describe a method to remove non-decoupling heavy fields from a quantized field theory and to construct a low-energy one-loop effective Lagrangian by integrating out the heavy degrees of freedom in the path integral. We apply this method to the Higgs boson in a spontaneously broken SU(2) gauge theory (gauged linear sigma-model). In this context, the background-field method is generalized to the non-linear representation of the Higgs sector by applying (a generalization of) the Stueckelberg formalism. The (background) gauge-invariant renormalization is discussed. At one loop the log M_H-terms of the heavy-Higgs limit of this model coincide with the UV-divergent terms of the corresponding gauged non-linear sigma-model, but vertex functions differ in addition by finite (constant) terms in both models. These terms are also derived by our method. Diagrammatic calculations of some vertex functions are presented as consistency check.Comment: 33 Pages LaTeX, 6 figures uuencoded postscrip
    • …
    corecore