30 research outputs found

    Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria

    Get PDF
    Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a “reactive site loop” within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins) may underestimate their activity

    Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50.

    No full text
    Porphyromonas gingivalis is an anaerobic, asaccharolytic Gram-negative rod associated with chronic periodontitis. We have undertaken a proteomic study of the outer membrane of P. gingivalis strain W50 using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteins were identified by reference to the pre-release genomic sequence of P. gingivalis available from The Institute for Genomic Research. Out of 39 proteins identified, five were TonB-linked outer membrane receptors, ten others were putative integral outer membrane proteins and four were putative lipoproteins. Pyroglutamate was found to be the N-terminal residue of seven of the proteins, and was predicted to be the N-terminal residue of 13 additional proteins. The RgpA, Kgp and HagA polyproteins were identified as fully processed domains in outer membranes prepared in the presence of proteinase inhibitors. Several domains were found to be C-terminally truncated 16-57 residues upstream from the N-terminus of the following domain, at a residue penultimate to a lysine. This pattern of C-terminal processing was not detected in a W50 strain isogenic mutant lacking the lysine-specific proteinase Kgp. Construction of another W50 isogenic mutant lacking the arginine-specific proteinases indicated that RgpB and/or RgpA were also involved in domain processing. The C-terminal adhesin of RgpA, designated RgpA27, together with RgpB and two newly identified proteins designated P27 and P59 were found to migrate on two-dimensional gels as vertical streaks at a molecular mass 13-42 kDa higher than that calculated from their gene sequences. The electrophoretic behaviour of these proteins, together with their immunoreactivity with a monoclonal antibody that recognizes lipopolysaccharide, is consistent with a modification that could anchor the proteins to the outer membrane
    corecore