4,466 research outputs found

    Time-delayed Spatial Patterns in a Two-dimensional Array of Coupled Oscillators

    Full text link
    We investigated the effect of time delays on phase configurations in a set of two-dimensional coupled phase oscillators. Each oscillator is allowed to interact with its neighbors located within a finite radius, which serves as a control parameter in this study. It is found that distance-dependent time-delays induce various patterns including traveling rolls, square-like and rhombus-like patterns, spirals, and targets. We analyzed the stability boundaries of the emerging patterns and briefly pointed out the possible empirical implications of such time-delayed patterns.Comment: 5 Figure

    Quantum coherence and interaction-free measurements

    Get PDF
    We investigate the extent to which ``interaction-free'' measurements perturb the state of quantum systems. We show that the absence of energy exchange during the measurement is not a sufficient criterion to preserve that state, as the quantum system is subject to measurement dependent decoherence. While it is possible in general to design interaction-free measurement schemes that do preserve that state, the requirement of quantum coherence preservation rapidly leads to a very low efficiency. Our results, which have a simple interpretation in terms of ``which-way'' arguments, open up the way to novel quantum non-demolition techniques.Comment: 4 pages incl. 2 PostScript figures (.eps), LaTeX using RevTeX, submitted to Phys. Rev. A (Rapid Comm.

    Collider Phenomenology with Split-UED

    Get PDF
    We investigate the collider implications of Split Universal Extra Dimensions. The non-vanishing fermion mass in the bulk, which is consistent with the KK-parity, largely modifies the phenomenology of Minimal Universal Exta Dimensions. We scrutinize the behavior of couplings and study the discovery reach of the Tevatron and the LHC for level-2 Kaluza-Klein modes in the dilepton channel, which would indicates the presence of the extra dimensions. Observation of large event rates for dilepton resonances can result from a nontrivial fermion mass profile along the extra dimensions, which, in turn, may corroborate extra dimensional explanation for the observation of the positron excess in cosmic rays.Comment: 23 pages, 15 figure

    Spectroscopic determination of hole density in the ferromagnetic semiconductor Ga1−x_{1-x}Mnx_{x}As

    Full text link
    The measurement of the hole density in the ferromagnetic semiconductor Ga1−x_{1-x}Mnx_{x}As is notoriously difficult using standard transport techniques due to the dominance of the anomalous Hall effect. Here, we report the first spectroscopic measurement of the hole density in four Ga1−x_{1-x}Mnx_{x}As samples (x=0,0.038,0.061,0.083x=0, 0.038, 0.061, 0.083) at room temperature using Raman scattering intensity analysis of the coupled plasmon-LO-phonon mode and the unscreened LO phonon. The unscreened LO phonon frequency linearly decreases as the Mn concentration increases up to 8.3%. The hole density determined from the Raman scattering shows a monotonic increase with increasing xx for x≤0.083x\leq0.083, exhibiting a direct correlation to the observed TcT_c. The optical technique reported here provides an unambiguous means of determining the hole density in this important new class of ``spintronic'' semiconductor materials.Comment: two-column format 5 pages, 4 figures, to appear in Physical Review

    Topology of amorphous tetrahedral semiconductors on intermediate lengthscales

    Full text link
    Using the recently-proposed ``activation-relaxation technique'' for optimizing complex structures, we develop a structural model appropriate to a-GaAs which is almost free of odd-membered rings, i.e., wrong bonds, and possesses an almost perfect coordination of four. The model is found to be superior to structures obtained from much more computer-intensive tight-binding or quantum molecular-dynamics simulations. For the elemental system a-Si, where wrong bonds do not exist, the cost in elastic energy for removing odd-membered rings is such that the traditional continuous-random network is appropriate. Our study thus provides, for the first time, direct information on the nature of intermediate-range topology in amorphous tetrahedral semiconductors.Comment: 4 pages, Latex and 2 postscript figure
    • …
    corecore