29,137 research outputs found

    The Algebra of Strand Splitting. I. A Braided Version of Thompson's Group V

    Full text link
    We construct a braided version of Thompson's group V.Comment: 27 page

    Potts Model On Random Trees

    Full text link
    We study the Potts model on locally tree-like random graphs of arbitrary degree distribution. Using a population dynamics algorithm we numerically solve the problem exactly. We confirm our results with simulations. Comparisons with a previous approach are made, showing where its assumption of uniform local fields breaks down for networks with nodes of low degree.Comment: 10 pages, 3 figure

    Bounds for the time to failure of hierarchical systems of fracture

    Full text link
    For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically organized load-transfer models of fracture is non-zero for sets of infinite size. This fact could have a profound significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative method to compute the successive time intervals for individual breaking in systems of height nn in terms of the information calculated in the previous height n−1n-1. As a byproduct of this method, rigorous lower and higher bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the resulting lower bound leads to the evidence that the above mentioned suspicion is actually true.Comment: Final version. To appear in Phys. Rev. E, Feb 199

    The Application of the Newman-Janis Algorithm in Obtaining Interior Solutions of the Kerr Metric

    Full text link
    In this paper we present a class of metrics to be considered as new possible sources for the Kerr metric. These new solutions are generated by applying the Newman-Janis algorithm (NJA) to any static spherically symmetric (SSS) ``seed'' metric. The continuity conditions for joining any two of these new metrics is presented. A specific analysis of the joining of interior solutions to the Kerr exterior is made. The boundary conditions used are those first developed by Dormois and Israel. We find that the NJA can be used to generate new physically allowable interior solutions. These new solutions can be matched smoothly to the Kerr metric. We present a general method for finding such solutions with oblate spheroidal boundary surfaces. Finally a trial solution is found and presented.Comment: 11 pages, Latex, 4 postscript figures. To be published in Classical and Quantum Gravity. Title and abstract are now on the same pag

    The Helicopter Antenna Radiation Prediction Code (HARP)

    Get PDF
    The first nine months effort in the development of a user oriented computer code, referred to as the HARP code, for analyzing the radiation from helicopter antennas is described. The HARP code uses modern computer graphics to aid in the description and display of the helicopter geometry. At low frequencies the helicopter is modeled by polygonal plates, and the method of moments is used to compute the desired patterns. At high frequencies the helicopter is modeled by a composite ellipsoid and flat plates, and computations are made using the geometrical theory of diffraction. The HARP code will provide a user friendly interface, employing modern computer graphics, to aid the user to describe the helicopter geometry, select the method of computation, construct the desired high or low frequency model, and display the results

    Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector

    Get PDF
    We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20–510 over the current best limits found by using the MINOS near detector

    Improved Measurement of Muon Antineutrino Disappearance in MINOS

    Get PDF
    We report an improved measurement of ν̅_μ disappearance over a distance of 735 km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a ν̅_μ-enhanced configuration. From a total exposure of 2.95×10^20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of Δm̅^2=[2.62_(-0.28)^(+0.31)(stat)±0.09(syst)]×10^(-3)  eV^2 and constrain the ν_μ mixing angle sin^(2)(2θ̅)>0.75 (90% C.L.). These values are in agreement with Δm^2 and sin^(2)(2θ) measured for νμ, removing the tension reported in [ P. Adamson et al. Phys. Rev. Lett. 107 021801 (2011)]

    Nonequilibrium phase transition in the coevolution of networks and opinions

    Full text link
    Models of the convergence of opinion in social systems have been the subject of a considerable amount of recent attention in the physics literature. These models divide into two classes, those in which individuals form their beliefs based on the opinions of their neighbors in a social network of personal acquaintances, and those in which, conversely, network connections form between individuals of similar beliefs. While both of these processes can give rise to realistic levels of agreement between acquaintances, practical experience suggests that opinion formation in the real world is not a result of one process or the other, but a combination of the two. Here we present a simple model of this combination, with a single parameter controlling the balance of the two processes. We find that the model undergoes a continuous phase transition as this parameter is varied, from a regime in which opinions are arbitrarily diverse to one in which most individuals hold the same opinion. We characterize the static and dynamical properties of this transition

    Hierarchies of Predominantly Connected Communities

    Full text link
    We consider communities whose vertices are predominantly connected, i.e., the vertices in each community are stronger connected to other community members of the same community than to vertices outside the community. Flake et al. introduced a hierarchical clustering algorithm that finds such predominantly connected communities of different coarseness depending on an input parameter. We present a simple and efficient method for constructing a clustering hierarchy according to Flake et al. that supersedes the necessity of choosing feasible parameter values and guarantees the completeness of the resulting hierarchy, i.e., the hierarchy contains all clusterings that can be constructed by the original algorithm for any parameter value. However, predominantly connected communities are not organized in a single hierarchy. Thus, we develop a framework that, after precomputing at most 2(n−1)2(n-1) maximum flows, admits a linear time construction of a clustering \C(S) of predominantly connected communities that contains a given community SS and is maximum in the sense that any further clustering of predominantly connected communities that also contains SS is hierarchically nested in \C(S). We further generalize this construction yielding a clustering with similar properties for kk given communities in O(kn)O(kn) time. This admits the analysis of a network's structure with respect to various communities in different hierarchies.Comment: to appear (WADS 2013

    Maxwell Fields and Shear-Free Null Geodesic Congruences

    Full text link
    We study and report on the class of vacuum Maxwell fields in Minkowski space that possess a non-degenerate, diverging, principle null vector field (null eigenvector field of the Maxwell tensor) that is tangent to a shear-free null geodesics congruence. These congruences can be either surface forming (the tangent vectors proportional to gradients) or not, i.e., the twisting congruences. In the non-twisting case, the associated Maxwell fields are precisely the Lienard-Wiechert fields, i.e., those Maxwell fields arising from an electric monopole moving on an arbitrary worldline. The null geodesic congruence is given by the generators of the light-cones with apex on the world-line. The twisting case is much richer, more interesting and far more complicated. In a twisting subcase, where our main interests lie, it can be given the following strange interpretation. If we allow the real Minkowski space to be complexified so that the real Minkowski coordinates x^a take complex values, i.e., x^a => z^a=x^a+iy^a with complex metric g=eta_abdz^adz^b, the real vacuum Maxwell equations can be extended into the complex and rewritten as curlW =iWdot, divW with W =E+iB. This subcase of Maxwell fields can then be extended into the complex so as to have as source, a complex analytic world-line, i.e., to now become complex Lienard-Wiechart fields. When viewed as real fields on the real Minkowski space, z^a=x^a, they possess a real principle null vector that is shear-free but twisting and diverging. The twist is a measure of how far the complex world-line is from the real 'slice'. Most Maxwell fields in this subcase are asymptotically flat with a time-varying set of electric and magnetic moments, all depending on the complex displacements and the complex velocities.Comment: 3
    • …
    corecore