22 research outputs found

    Time Changes with the Embodiment of Another’s Body Posture

    Get PDF
    The aim of the present study was to investigate whether the perception of presentation durations of pictures of different body postures was distorted as function of the embodied movement that originally produced these postures. Participants were presented with two pictures, one with a low-arousal body posture judged to require no movement and the other with a high-arousal body posture judged to require considerable movement. In a temporal bisection task with two ranges of standard durations (0.4/1.6 s and 2/8 s), the participants had to judge whether the presentation duration of each of the pictures was more similar to the short or to the long standard duration. The results showed that the duration was judged longer for the posture requiring more movement than for the posture requiring less movement. However the magnitude of this overestimation was relatively greater for the range of short durations than for that of longer durations. Further analyses suggest that this lengthening effect was mediated by an arousal effect of limited duration on the speed of the internal clock system

    The approach taken to reducing the risk of transfusion related acute lung injury in Canada

    No full text
    Transfusion related acute lung injury (TRALI) has become a major reported cause of severe transfusion reactions and mortality. Over the past four years significant changes have been taken in Canada in order both to improve the recognition of the risk and to decrease its incidence. An international meeting was held in April of 2004 entitled “Towards an Understanding of TRALI". As a result of the analysis and recommendations from this meeting, the Canadian Blood Services established an ongoing review committee and established a laboratory diagnostic facility to identify at risk donors and recipients. A system has been developed to identify implicated donors and exclude them from the blood donor pool. Other steps have been taken to exclude potentially high risk donors, such as previously pregnant females, from the plasma and platelet donor pool. A considerable amount of education also has been offered to clinical services in the country. This paper summarizes the definitions, categorizations of implicated donors, and the ongoing precautionary activities related to plasma products. Noted within the article are the methods used for locating and selecting data. These were primarily based on the international TRALI conference in 2004, and from ongoing discussions and information provided by the Canadian Blood Services TRALI Review Committee. No ethics referral or approval was requested, and a summary is included in the article

    Membranes - Lateral Organization and Domain Formation in a Two-Component Lipid Membrane System.

    No full text
    AbstractThe thermodynamic phase behavior and lateral lipid membrane organization of unilamellar vesicles made from mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) were investigated by fluorescence resonance energy transfer (FRET) as a function of temperature and composition. This was done by incorporating a headgroup-labeled lipid donor (NBD-DPPE) and acceptor (N-Rh-DPPE) in low concentrations into the binary mixtures. Two instances of increased energy transfer efficiency were observed close to the phase lines in the DMPC/DSPC phase diagram. The increase in energy transfer efficiency was attributed to a differential preference of the probes for dynamic and fluctuating gel/fluid coexisting phases. This differential preference causes the probes to segregate (S. Pedersen, K. Jørgensen, T. R. Baekmark, and O. G. Mouritsen, 1996, Biophys. J. 71:554–560). The observed increases in energy transfer match with the boundaries of the DMPC/DSPC phase diagram, as measured by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). We propose that the two instances of probe segregation are due to the presence of DMPC-rich and DSPC-rich domains, which form a dynamic structure of gel/fluid coexisting phases at two different temperatures. Monitoring the melting profile of each lipid component independently by FTIR shows that the domain structure is formed by DMPC-rich and DSPC-rich domains rather than by pure DMPC and DSPC domains
    corecore