7,447 research outputs found
Energy conditions in f(R) gravity and Brans-Dicke theories
The equivalence between f(R) gravity and scalar-tensor theories is invoked to
study the null, strong, weak and dominant energy conditions in Brans-Dicke
theory. We consider the validity of the energy conditions in Brans-Dicke theory
by invoking the energy conditions derived from a generic f(R) theory. The
parameters involved are shown to be consistent with an accelerated expanding
universe.Comment: 9 pages, 1 figure, to appear in IJMP
2-(Ammoniomethyl)pyridinium sulfate monohydrate
In the crystal of the title hydrated molecular salt, C6H10N2
2+·SO4
2−·H2O, N—H⋯O and O—H⋯O hydrogen bonds link the molecules into layers parallel to the ab plane. C—H⋯O hydrogen bonds are observed both within these layers and between molecules and ions in adjacent layers
A Lemaitre-Tolman-Bondi cosmological wormhole
We present a new analytical solution of the Einstein field equations
describing a wormhole shell of zero thickness joining two
Lema{\i}tre-Tolman-Bondi universes, with no radial accretion. The material on
the shell satisfies the energy conditions and, at late times, the shell becomes
comoving with the dust-dominated cosmic substratum.Comment: 5 pages, latex, no figures, to appear in Phys. Rev.
Brans-Dicke cylindrical wormholes
Static axisymmetric thin-shell wormholes are constructed within the framework
of the Brans-Dicke scalar-tensor theory of gravity. Examples of wormholes
associated with vacuum and electromagnetic fields are studied. All
constructions must be threaded by exotic matter, except in the case of
geometries with a singularity of finite radius, associated with an electric
field, which can have a throat supported by ordinary matter. These results are
achieved with any of the two definitions of the flare-out condition considered.Comment: 11 pages, 3 figures; v3: corrected version, conclusions unchange
Di-μ-iodido-bis[acetyl(4-methyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane)(N-nitroso-N-oxidoaniline-κ2 O,O′)rhodium(III)]
The title compound, [Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2], contains a binuclear centrosymmetric RhIII dimer bridged by iodide anions, with respective Rh⋯Rh and I⋯I distances of 4.1437 (5) and 3.9144 (5) Å. The RhIII atom is in a distorted octahedral RhCI2O2P coordination with considerably different Rh—I distances to the bridging iodide anions. There are no classical hydrogen-bonding interactions observed for this complex
Dirty black holes: Quasinormal modes for "squeezed" horizons
We consider the quasinormal modes for a class of black hole spacetimes that,
informally speaking, contain a closely ``squeezed'' pair of horizons. (This
scenario, where the relevant observer is presumed to be ``trapped'' between the
horizons, is operationally distinct from near-extremal black holes with an
external observer.) It is shown, by analytical means, that the spacing of the
quasinormal frequencies equals the surface gravity at the squeezed horizons.
Moreover, we can calculate the real part of these frequencies provided that the
horizons are sufficiently close together (but not necessarily degenerate or
even ``nearly degenerate''). The novelty of our analysis (which extends a
model-specific treatment by Cardoso and Lemos) is that we consider ``dirty''
black holes; that is, the observable portion of the (static and spherically
symmetric) spacetime is allowed to contain an arbitrary distribution of matter.Comment: 15 pages, uses iopart.cls and setstack.sty V2: Two references added.
Also, the appendix now relates our computation of the Regge-Wheeler potential
for gravity in a generic "dirty" black hole to the results of Karlovini
[gr-qc/0111066
Restrictions on negative energy density in a curved spacetime
Recently a restriction ("quantum inequality-type relation") on the
(renormalized) energy density measured by a static observer in a "globally
static" (ultrastatic) spacetime has been formulated by Pfenning and Ford for
the minimally coupled scalar field, in the extension of quantum inequality-type
relation on flat spacetime of Ford and Roman. They found negative lower bounds
for the line integrals of energy density multiplied by a sampling (weighting)
function, and explicitly evaluate them for some specific spacetimes. In this
paper, we study the lower bound on spacetimes whose spacelike hypersurfaces are
compact and without boundary. In the short "sampling time" limit, the bound has
asymptotic expansion. Although the expansion can not be represented by locally
invariant quantities in general due to the nonlocal nature of the integral, we
explicitly evaluate the dominant terms in the limit in terms of the invariant
quantities. We also make an estimate for the bound in the long sampling time
limit.Comment: LaTex, 23 Page
How to make a traversable wormhole from a Schwarzschild black hole
The theoretical construction of a traversable wormhole from a Schwarzschild
black hole is described, using analytic solutions in Einstein gravity. The
matter model is pure phantom radiation (pure radiation with negative energy
density) and the idealization of impulsive radiation is employed.Comment: 4 pages, 4 figure
Casimir forces in Bose-Einstein condensates: finite size effects in three-dimensional rectangular cavities
The Casimir force due to {\it thermal} fluctuations (or pseudo-Casimir force)
was previously calculated for the perfect Bose gas in the slab geometry for
various boundary conditions. The Casimir pressure due to {\it quantum}
fluctuations in a weakly-interacting dilute Bose-Einstein condensate (BEC)
confined to a parallel plate geometry was recently calculated for Dirichlet
boundary conditions. In this paper we calculate the Casimir energy and pressure
due to quantum fluctuations in a zero-temperature homogeneous
weakly-interacting dilute BEC confined to a parallel plate geometry with
periodic boundary conditions and include higher-order corrections which we
refer to as Bogoliubov corrections. The leading order term is identified as the
Casimir energy of a massless scalar field moving with wave velocity equal to
the speed of sound in the BEC. We then obtain the leading order Casimir
pressure in a general three-dimensional rectangular cavity of arbitrary lengths
and obtain the finite-size correction to the parallel plate scenario.Comment: 12 pages; no figures; v.2: version accepted for publication in JSTAT
v.3: references adde
- …