802 research outputs found

    Parameterized Study of the Test Cover Problem

    Full text link
    We carry out a systematic study of a natural covering problem, used for identification across several areas, in the realm of parameterized complexity. In the {\sc Test Cover} problem we are given a set [n]={1,...,n}[n]=\{1,...,n\} of items together with a collection, T\cal T, of distinct subsets of these items called tests. We assume that T\cal T is a test cover, i.e., for each pair of items there is a test in T\cal T containing exactly one of these items. The objective is to find a minimum size subcollection of T\cal T, which is still a test cover. The generic parameterized version of {\sc Test Cover} is denoted by p(k,n,T)p(k,n,|{\cal T}|)-{\sc Test Cover}. Here, we are given ([n],T)([n],\cal{T}) and a positive integer parameter kk as input and the objective is to decide whether there is a test cover of size at most p(k,n,T)p(k,n,|{\cal T}|). We study four parameterizations for {\sc Test Cover} and obtain the following: (a) kk-{\sc Test Cover}, and (nk)(n-k)-{\sc Test Cover} are fixed-parameter tractable (FPT). (b) (Tk)(|{\cal T}|-k)-{\sc Test Cover} and (logn+k)(\log n+k)-{\sc Test Cover} are W[1]-hard. Thus, it is unlikely that these problems are FPT

    (Non-)existence of Polynomial Kernels for the Test Cover Problem

    Full text link
    The input of the Test Cover problem consists of a set VV of vertices, and a collection E={E1,...,Em}{\cal E}=\{E_1,..., E_m\} of distinct subsets of VV, called tests. A test EqE_q separates a pair vi,vjv_i,v_j of vertices if {vi,vj}Eq=1.|\{v_i,v_j\}\cap E_q|=1. A subcollection TE{\cal T}\subseteq {\cal E} is a test cover if each pair vi,vjv_i,v_j of distinct vertices is separated by a test in T{\cal T}. The objective is to find a test cover of minimum cardinality, if one exists. This problem is NP-hard. We consider two parameterizations the Test Cover problem with parameter kk: (a) decide whether there is a test cover with at most kk tests, (b) decide whether there is a test cover with at most Vk|V|-k tests. Both parameterizations are known to be fixed-parameter tractable. We prove that none have a polynomial size kernel unless NPcoNP/polyNP\subseteq coNP/poly. Our proofs use the cross-composition method recently introduced by Bodlaender et al. (2011) and parametric duality introduced by Chen et al. (2005). The result for the parameterization (a) was an open problem (private communications with Henning Fernau and Jiong Guo, Jan.-Feb. 2012). We also show that the parameterization (a) admits a polynomial size kernel if the size of each test is upper-bounded by a constant

    Algorithms for the workflow satisfiability problem engineered for counting constraints

    Get PDF
    The workflow satisfiability problem (WSP) asks whether there exists an assignment of authorized users to the steps in a workflow specification that satisfies the constraints in the specification. The problem is NP-hard in general, but several subclasses of the problem are known to be fixed-parameter tractable (FPT) when parameterized by the number of steps in the specification. In this paper, we consider the WSP with user-independent counting constraints, a large class of constraints for which the WSP is known to be FPT. We describe an efficient implementation of an FPT algorithm for solving this subclass of the WSP and an experimental evaluation of this algorithm. The algorithm iteratively generates all equivalence classes of possible partial solutions until, whenever possible, it finds a complete solution to the problem. We also provide a reduction from a WSP instance to a pseudo-Boolean SAT instance. We apply this reduction to the instances used in our experiments and solve the resulting PB SAT problems using SAT4J, a PB SAT solver. We compare the performance of our algorithm with that of SAT4J and discuss which of the two approaches would be more effective in practice

    Parameterized and Approximation Algorithms for the Load Coloring Problem

    Get PDF
    Let c,kc, k be two positive integers and let G=(V,E)G=(V,E) be a graph. The (c,k)(c,k)-Load Coloring Problem (denoted (c,k)(c,k)-LCP) asks whether there is a cc-coloring φ:V[c]\varphi: V \rightarrow [c] such that for every i[c]i \in [c], there are at least kk edges with both endvertices colored ii. Gutin and Jones (IPL 2014) studied this problem with c=2c=2. They showed (2,k)(2,k)-LCP to be fixed parameter tractable (FPT) with parameter kk by obtaining a kernel with at most 7k7k vertices. In this paper, we extend the study to any fixed cc by giving both a linear-vertex and a linear-edge kernel. In the particular case of c=2c=2, we obtain a kernel with less than 4k4k vertices and less than 8k8k edges. These results imply that for any fixed c2c\ge 2, (c,k)(c,k)-LCP is FPT and that the optimization version of (c,k)(c,k)-LCP (where kk is to be maximized) has an approximation algorithm with a constant ratio for any fixed c2c\ge 2
    corecore