92 research outputs found

    Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues

    Full text link
    State of the art research and treatment of biological tissues require accurate and efficient methods for describing their mechanical properties. Indeed, micromechanics motivated approaches provide a systematic method for elevating relevant data from the microscopic level to the macroscopic one. In this work the mechanical responses of hyperelastic tissues with one and two families of collagen fibers are analyzed by application of a new variational estimate accounting for their histology and the behaviors of their constituents. The resulting, close form expressions, are used to determine the overall response of the wall of a healthy human coronary artery. To demonstrate the accuracy of the proposed method these predictions are compared with corresponding 3-D finite element simulations of a periodic unit cell of the tissue with two families of fibers. Throughout, the analytical predictions for the highly nonlinear and anisotropic tissue are in agreement with the numerical simulations

    The unexplained success of stentplasty vasospasm treatment

    Get PDF
    Background Cerebral vasospasm (CVS) following subarachnoid hemorrhage occurs in up to 70% of patients. Recently, stents have been used to successfully treat CVS. This implies that the force required to expand spastic vessels and resolve vasospasm is lower than previously thought. Objective We develop a mechanistic model of the spastic arterial wall to provide insight into CVS and predict the forces required to treat it. Material and Methods The arterial wall is modelled as a cylindrical membrane using a constrained mixture theory that accounts for the mechanical roles of elastin, collagen and vascular smooth muscle cells (VSMC). We model the pressure diameter curve prior to CVS and predict how it changes following CVS. We propose a stretch-based damage criterion for VSMC and evaluate if several commercially available stents are able to resolve vasospasm. Results The model predicts that dilatation of VSMCs beyond a threshold of mechanical failure is sufficient to resolve CVS without damage to the underlying extracellular matrix. Consistent with recent clinical observations, our model predicts that existing stents have the potential to provide sufficient outward force to successfully treat CVS and that success will be dependent on an appropriate match between stent and vessel. Conclusion Mathematical models of CVS can provide insights into biological mechanisms and explore treatment approaches. Improved understanding of the underlying mechanistic processes governing CVS and its mechanical treatment may assist in the development of dedicated stents

    Orientation-dependent stability and quantum-confinement effects of silicon carbide nanowires

    Full text link
    The energetic stability and electronic properties of hydrogenated silicon carbide nanowires (SiCNWs) with zinc blende (3C) and wurtzite (2H) structures are investigated using first-principles calculations within density functional theory and generalized gradient approximation. The [111]-orientated 3C-SiCNWs are energetically more stable than other kinds of NWs with similar size. All the NWs have direct band gaps except the 3C-SiCNWs orientating along [112] direction. The band gaps of these NWs decrease with the increase of wire size, due to the quantum-confinement effects. The direct-band-gap features can be kept for the 3C-SiCNWs orientating along [111] direction with diameters up to 2.8 nm. The superior stability and electronic structures of the [111]-orientated 3C-SiCNWs are in good agreement with the experimental results.Comment: 9 pages, 5 figure

    Large-scale Synthesis of β-SiC Nanochains and Their Raman/Photoluminescence Properties

    Get PDF
    Although the SiC/SiO2 nanochain heterojunction has been synthesized, the chained homogeneous nanostructure of SiC has not been reported before. Herein, the novel β-SiC nanochains are synthesized assisted by the AAO template. The characterized results demonstrate that the nanostructures are constructed by spheres of 25–30 nm and conjoint wires of 15–20 nm in diameters. Raman and photoluminescence measurements are used to explore the unique optical properties. A speed-alternating vapor–solid (SA-VS) growth mechanism is proposed to interpret the formation of this typical nanochains. The achieved nanochains enrich the species of one-dimensional (1D) nanostructures and may hold great potential applications in nanotechnology

    Macroporous silica-alumina composites with mesoporous walls

    No full text

    A thermodynamic criterion for selection of gas compositions for diamond deposition

    No full text
    Isoactivity lines for carbon with respect to diamond as the standard state have been calculated in the ternary system C-H-O at 1223 K to identify the diamond deposition domain. The gas composition is calculated by suppressing the formation of all condensed forms of carbon using the SOLGASMIX free-energy minimization program. Thirty six gas species were included in the calculation. From the gas composition, isoactivity lines are computed using recent data on the Gibbs energy of diamond. Except for activities less than 0.1, the isoactivity lines are almost linear on the C-H-O ternary diagram. Gas compositions which generate activity of diamond ranging from 1 to 100 at 1223 K fall inside a narrow wedge originating from the point representing CO. This wedge is very similar to the revised lens-shaped diamond growth domain identified by Bachman et al., using inputs from experiment. The small difference between the calculated and observed domains may be attributed to variation in the supersaturation required for diamond deposition with gas composition. The diamond solubility in the gas phase along the isoactivity line for a<sub>di</sub> = 100 and P = 6.7 kPa exhibits a minimum at 1280 K, which is close to the optimum temperature found experimentally. At higher supersaturations, non-diamond forms of carbon, including amorphous varieties, are expected. The results suggest that thermodynamic calculations can be useful for locating diamond growth domains in more complex CVD systems containing halogens, for which very little experimental data is available
    corecore