22 research outputs found

    Preliminary In Vivo Studies of a New Injectable Bone Substitute

    Get PDF
    Calcium-phosphate materials have been increasingly employed in orthopedic and dental applications in recent years and are now being developed for use in noninvasive surgery or as carriers for drug delivery systems. We developed an injectable bone substitute (IBS) for percutaneous orthopedic surgery which uses a biphasic calcium-phosphate (BCP) mixture composed of hydroxyapatite (60%) and Ăź-tricalcium phosphate (40%), together with a polymer (hydroxy-propyl-methyl-cellulose, HPMC) as a carrier. The best BCP/polymer ratio was determined to achieve the highest mineral phase in the composite and provide the rheological properties required for injectable material. The in vivo biocompatibility and biofunctionality of IBS were tested in rabbits using implants in subcutaneous, intramuscular and cartilage sites and defects created in trabecular bone of the femur epiphysis. The defects were filled with IBS, and histological studies were performed after 1, 2, 4 and 12 weeks on decalcified and non-decalcified sections. Image analysis and backscattered electron analyses were performed by scanning electron microscopy. This study demonstrated that HPMC is a non-toxic material which can be associated with calcium-phosphates to produce an IBS and create a matrix for deep cell colonization conducive to bone ingrowth

    A new injectable calcium phosphate biomaterial for immediate bone filling of extraction sockets: A preliminary study in dogs

    No full text
    Background: Many different bone substitutes, such as autografts, allografts or synthetic biomaterials have been proposed to restore alveolar bone loss and support efficient placement of dental implants. This experimental study evaluated the osteoconductive properties of an injectable bone substitute (IBS) composed of a polymeric carrier and a calcium phosphate mineral phase, used to fill mandibular and maxillary canine extraction sockets. Methods: The polymer was a cellulose derivative (methyl-hydroxy-propyl-cellulose, MHPC), and the mineral phase consisted of granules of biphasic calcium phosphate (BCP) ceramics 200 to 500 mu m in diameter, Mandibular and maxillary premolars extracted from 3 dogs (a total of 60 extraction sites) were immediately treated with the IBS or left unfilled as control sites. Animals were sacrificed 3 months after implantation and all extraction sockets were prepared for histological evaluation. Results: Qualitative histological studies showed that the IBS was able to support the extensive apposition of well-mineralized newly formed lamellar bone over the entire socket surface and appeared to prevent alveolar ridge bone loss in treated extraction sites. Quantitative evaluation showed that the amount of newly formed bone was significantly higher in mandibular than maxillary extraction sockets for both treated and control sites. Conclusions: An injectable bone substitute composed of a polymeric carrier and calcium phosphate was effective in enhancing the bone fill of extraction sockets. This approach may prove promising for periodontal lesions. The material expressed osteoconductive capacities, and the biological properties of the mineral phase were conserved
    corecore