788 research outputs found

    Cell bystander effect induced by radiofrequency electromagnetic fields and magnetic nanoparticles

    Get PDF
    Induced effects by direct exposure to ionizing radiation (IR) are a central issue in many fields like radiation protection, clinic diagnosis and oncological therapies. Direct irradiation at certain doses induce cell death, but similar effects can also occur in cells no directly exposed to IR, a mechanism known as bystander effect. Non-IR (radiofrequency waves) can induce the death of cells loaded with MNPs in a focused oncological therapy known as magnetic hyperthermia. Indirect mechanisms are also able to induce the death of unloaded MNPs cells. Using in vitro cell models, we found that colocalization of the MNPs at the lysosomes and the non-increase of the temperature induces bystander effect under non-IR. Our results provide a landscape in which bystander effects are a more general mechanism, up to now only observed and clinically used in the field of radiotherapy.Comment: 16 pages, 4 figures, submitted to International Journal of Radiation Biolog

    Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake

    Full text link
    Nanoparticles (NPs) engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the NP surface, forming a swaddling layer called protein corona that influences cell internalization. We present a study on protein adsorption onto different magnetic NPs (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. Two colloids with magnetite cores of 25 nm, same hydrodynamic size and opposite surface charge were in situ coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size increase. After 24 h of incubation large MNP-protein aggregates with hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were observed. Each cluster contained an estimated number of magnetic cores between 450 and 1000, indicating the formation of large aggregates with a "plum pudding" structure of MNPs embedded into a protein network of negative surface charge irrespective of the MNP_core charge. We demonstrated that PEI-MNPs are incorporated in much larger amounts than the PAA-MNPs units. Quantitative analysis showed that SH-SY5Y cells can incorporate 100 per cent of the added PEI-MNPs up to about 100 pg per cell, whereas for PAA-MNPs the uptake was less than 50 percent. The final cellular distribution showed also notable differences regarding partial attachment to the cell membrane. These results highlight the need to characterize the final properties of MNPs after protein adsorption in biological media, and demonstrate the impact of these properties on the internalization mechanisms in neural cells.Comment: 32 pages, 10 figure

    Field Dependence of Blocking Temperature in Magnetite Nanoparticles

    Full text link
    Spherical magnetite nanoparticles having average particle size = 5 nm have been synthesized by coprecipitation of Fe(II) and Fe(III) salts in KOH with Polyvinylalcohol (PVA). The resulting dry powder displayed superparamgnetic (SPM) behaviour at room temperature, with a transition to a blocked state at TB ~ 45 K for applied field Happ = 500 Oe. The effect of dipolar interactions was investigated by measuring the dependence of TB on the applied field Hap and driven ac field in susceptibility data. A thermally activated model has been used to fit the dynamic data to obtain the single-particle energy barriers Ea = KeffV, allowing us to estimate the contributions of dipolar interactions to the single-particle effective magnetic anisotropy Keff. We have measured the dependence of TB with Hap in order to draw the transition contours of a H-T diagram. Two different regimes are found for the (TB-T0) ~H{\lambda} dependence at low and high fields, that can be understood within a pure SPM relaxation-time (N\'eel-Brown) landscape. The TB(H) data shows a crossover from {\lambda} = 2/3 to {\lambda} ~2 for applied magnetic fields of \approx 550 Oe.Comment: 6 pages, 4 figure

    Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behaviour and large losses

    Full text link
    We report on hyperthermia measurements on a colloidal solution of 15 nm monodisperse FeCo nanoparticles (NPs). Losses as a function of the magnetic field display a sharp increase followed by a plateau, which is what is expected for losses of ferromagnetic single-domain NPs. The frequency dependence of the coercive field is deduced from hyperthermia measurement and is in quantitative agreement with a simple model of non-interacting NPs. The measured losses (1.5 mJ/g) compare to the highest of the literature, though the saturation magnetization of the NPs is well below the bulk one.Comment: 14 pages, 3 figure

    Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Full text link
    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The amount of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1 to 5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min, and the viability of the blank DCs (i.e., without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2+) or negative (COOH-) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the amount of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.Comment: In Press. 33 pages, 11 figure
    • …
    corecore