336 research outputs found

    A monograph of Octoknema (Octoknemaceae — Olacaceae s.l.)

    Get PDF
    A revision of Octoknema Pierre is provided, based on morphological data gathered from a study of herbarium specimens and observations in the field. Fourteen species of Octoknema are recognised including six new species: O. bakossiensis Gosline & Malécot, O. belingensis Gosline & Malécot, O. chailluensis Malécot & Gosline, O. kivuensis Gosline & Malécot, O. mokoko Gosline & Malécot and O. ogoouensis Malécot & Gosline. Data are given for four additional poorly known taxa (Octoknema species A, B, C and D)

    Micromechanical model for protein materials: From macromolecules to macroscopic fibers

    Get PDF
    We propose a model for the mechanical behavior of protein materials. Based on a limited number of experimental macromolecular parameters (persistence and contour lengths, rate of unfolding dissipation) we obtain the macroscopic behavior of keratin fibers (human, cow, and rabbit hair), taking into account the damage and residual stretches effects which are fundamental in many functions of life. We support our theoretical results by showing that our model is robust and able to reproduce with high quantitive accuracy the cyclic experimental behavior of different keratinous protein materials we tested. We also show the capability of describing, even if with lower precision, the dissipation and permanent strain effects in spider silks

    AFM study of morphology and mechanical properties of a chimeric 2 spider silk and bone sialoprotein protein for bone regeneration

    Get PDF
    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6merþBSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6merþBSP, and control films consisting of only the silk component (6mer). The behavior of the 6merþBSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca2þ ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.Silvia Games thanks the Foundation for Science and Technology (FCT) for supporting her Ph.D. grant, SFRH/BD/28603/2006. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283), the Chimera project (PTDC/EBB-EBI/109093/2008) funded by the FCT agency, the NIH (P41 EB002520) Tissue Engineering Resource Center, and the NIH (EB003210 and DE017207)

    Dorsolateral head muscles of the catfish families Nematogenyidae and Trichomycteridae (Siluriformes: Loricarioidei): comparative anatomy and phylogenetic analysis

    Full text link

    Biocatalytic Synthesis of Polymers of Precisely Defined Structures

    Get PDF
    The fabrication of functional nanoscale devices requires the construction of complex architectures at length scales characteristic of atoms and molecules. Currently microlithography and micro-machining of macroscopic objects are the preferred methods for construction of small devices, but these methods are limited to the micron scale. An intriguing approach to nanoscale fabrication involves the association of individual molecular components into the desired architectures by supramolecular assembly. This process requires the precise specification of intermolecular interactions, which in turn requires precise control of molecular structure

    Altered miRNA expression network in locus coeruleus of depressed suicide subjects

    Get PDF
    Norepinephrine (NE) is produced primarily by neurons in the locus coeruleus (LC). Retrograde and ultrastructural examinations reveal that the core of the LC and its surrounding region receives afferent projections from several brain areas which provide multiple neurochemical inputs to the LC with changes in LC neuronal firing, making it a highly coordinated event. Although NE and mediated signaling systems have been studied in relation to suicide and psychiatric disorders that increase the risk of suicide including depression, less is known about the corresponding changes in molecular network within LC. In this study, we examined miRNA networks in the LC of depressed suicide completers and healthy controls. Expression array revealed differential regulation of 13 miRNAs. Interaction between altered miRNAs and target genes showed dense interconnected molecular network. Functional clustering of predicated target genes yielded stress induced disorders that collectively showed the complex nature of suicidal behavior. In addition, 25 miRNAs were pairwise correlated specifically in the depressed suicide group, but not in the control group. Altogether, our study revealed for the first time the involvement of LC based dysregulated miRNA network in disrupting cellular pathways associated with suicidal behavior

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (<it>Danio rerio</it>) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes.</p> <p>Results</p> <p>We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish.</p> <p>Conclusion</p> <p>Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it seems justified to consider it an appropriate representative of these two groups. Among these muscles, the three with clear homologues in tetrapods and the further three identified in sarcopterygian fish are particularly appropriate for comparisons of results between the actinopterygian zebrafish and the sarcopterygians.</p

    Living in the Past: Phylogeography and Population Histories of Indo-Pacific Wrasses (Genus Halichoeres) in Shallow Lagoons versus Outer Reef Slopes

    Get PDF
    Sea level fluctuations during glacial cycles affect the distribution of shallow marine biota, exposing the continental shelf on a global scale, and displacing coral reef habitat to steep slopes on oceanic islands. In these circumstances we expect that species inhabiting lagoons should show shallow genetic architecture relative to species inhabiting more stable outer reefs. Here we test this expectation on an ocean-basin scale with four wrasses (genus Halichoeres): H. claudia (N = 194, with ocean-wide distribution) and H. ornatissimus (N = 346, a Hawaiian endemic) inhabit seaward reef slopes, whereas H. trimaculatus (N = 239) and H. margaritaceus (N = 118) inhabit lagoons and shallow habitats throughout the Pacific. Two mitochondrial markers (cytochrome oxidase I and control region) were sequenced to resolve population structure and history of each species. Haplotype and nucleotide diversity were similar among all four species. The outer reef species showed significantly less population structure, consistent with longer pelagic larval durations. Mismatch distributions and significant negative Fu’s F values indicate Pleistocene population expansion for all species, and (contrary to expectations) shallower histories in the outer slope species. We conclude that lagoonal wrasses may persist through glacial habitat disruptions, but are restricted to refugia during lower sea level stands. In contrast, outer reef slope species have homogeneous and well-connected populations through their entire ranges regardless of sea level fluctuations. These findings contradict the hypothesis that shallow species are less genetically diverse as a consequence of glacial cycles
    corecore