451 research outputs found
Partially massless fields during inflation
The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation
DBI Galileon and Late time acceleration of the universe
We consider 1+3 dimensional maximally symmetric Minkowski brane embedded in a
1+4 dimensional maximally symmetric Minkowski background. The resulting 1+3
dimensional effective field theory is of DBI (Dirac-Born-Infeld) Galileon type.
We use this model to study the late time acceleration of the universe. We study
the deviation of the model from the concordance \Lambda CDM behaviour. Finally
we put constraints on the model parameters using various observational data.Comment: 16 pages, 7 eps figures, Latex Style, new references added, corrected
missing reference
Quantum corrections to generic branes: DBI, NLSM, and more
We study quantum corrections to hypersurfaces of dimension embedded
in generic higher-dimensional spacetimes. Manifest covariance is maintained
throughout the analysis and our methods are valid for arbitrary co-dimension
and arbitrary bulk metric. A variety of theories which are prominent in the
modern amplitude literature arise as special limits: the scalar sector of
Dirac-Born-Infeld theories and their multi-field variants, as well as generic
non-linear sigma models and extensions thereof. Our explicit one-loop results
unite the leading corrections of all such models under a single umbrella. In
contrast to naive computations which generate effective actions that appear to
violate the non-linear symmetries of their classical counterparts, our
efficient methods maintain manifest covariance at all stages and make the
symmetry properties of the quantum action clear. We provide an explicit
comparison between our compact construction and other approaches and
demonstrate the ultimate physical equivalence between the superficially
different results
Galileons as Wess-Zumino Terms
We show that the galileons can be thought of as Wess-Zumino terms for the
spontaneous breaking of space-time symmetries. Wess-Zumino terms are terms
which are not captured by the coset construction for phenomenological
Lagrangians with broken symmetries. Rather they are, in d space-time
dimensions, d-form potentials for (d+1)-forms which are non-trivial co-cycles
in Lie algebra cohomology of the full symmetry group relative to the unbroken
symmetry group. We introduce the galileon algebras and construct the
non-trivial (d+1)-form co-cycles, showing that the presence of galileons and
multi-galileons in all dimensions is counted by the dimensions of particular
Lie algebra cohomology groups. We also discuss the DBI and conformal galileons
from this point of view, showing that they are not Wess-Zumino terms, with one
exception in each case.Comment: 49 pages. v2 minor changes, version appearing in JHE
SELDI-TOF-MS determination of hepcidin in clinical samples using stable isotope labelled hepcidin as an internal standard
<p>Abstract</p> <p>Background</p> <p>Hepcidin is a 25-residue peptide hormone crucial to iron homeostasis. It is essential to measure the concentration of hepcidin in cells, tissues and body fluids to understand its mechanisms and roles in physiology and pathophysiology. With a mass of 2791 Da hepcidin is readily detectable by mass spectrometry and LC-ESI, MALDI and SELDI have been used to estimate systemic hepcidin concentrations by analysing serum or urine. However, peak heights in mass spectra may not always reflect concentrations in samples due to competition during binding steps and variations in ionisation efficiency. Thus the purpose of this study was to develop a robust assay for measuring hepcidin using a stable isotope labelled hepcidin spiking approach in conjunction with SELDI-TOF-MS.</p> <p>Results</p> <p>We synthesised and re-folded hepcidin labelled with <sup>13</sup>C/<sup>15</sup>N phenylalanine at position 9 to generate an internal standard for mass spectrometry experiments. This labelled hepcidin is 10 Daltons heavier than the endogenous peptides and does not overlap with the isotopic envelope of the endogenous hepcidin or other common peaks in human serum or urine mass spectra and can be distinguished in low resolution mass spectrometers. We report the validation of adding labelled hepcidin into serum followed by SELDI analysis to generate an improved assay for hepcidin.</p> <p>Conclusion</p> <p>We demonstrate that without utilising a spiking approach the hepcidin peak height in SELDI spectra gives a good indication of hepcidin concentration. However, a stable isotope labelled hepcidin spiking approach provides a more robust assay, measures the absolute concentration of hepcidin and should facilitate inter-laboratory hepcidin comparisons.</p
Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity
We derive the decoupling limit of Massive Gravity on de Sitter in an
arbitrary number of space-time dimensions d. By embedding d-dimensional de
Sitter into d+1-dimensional Minkowski, we extract the physical helicity-1 and
helicity-0 polarizations of the graviton. The resulting decoupling theory is
similar to that obtained around Minkowski. We take great care at exploring the
partially massless limit and define the unique fully non-linear candidate
theory that is free of the helicity-0 mode in the decoupling limit, and which
therefore propagates only four degrees of freedom in four dimensions. In the
latter situation, we show that a new Vainshtein mechanism is at work in the
limit m^2\to 2 H^2 which decouples the helicity-0 mode when the parameters are
different from that of partially massless gravity. As a result, there is no
discontinuity between massive gravity and its partially massless limit, just in
the same way as there is no discontinuity in the massless limit of massive
gravity. The usual bounds on the graviton mass could therefore equivalently
well be interpreted as bounds on m^2-2H^2. When dealing with the exact
partially massless parameters, on the other hand, the symmetry at m^2=2H^2
imposes a specific constraint on matter. As a result the helicity-0 mode
decouples without even the need of any Vainshtein mechanism.Comment: 30 pages. Some clarifications and references added. New subsection
'Symmetry and Counting in the Full Theory' added. New appendix 'St\"uckelberg
fields in the Na\"ive approach' added. Matches version published in JCA
de Sitter Galileon
We generalize the Galileon symmetry and its relativistic extension to a de
Sitter background. This is made possible by studying a probe-brane in a flat
five-dimensional bulk using a de Sitter slicing. The generalized Lovelock
invariants induced on the probe brane enjoy the induced Poincar\'e symmetry
inherited from the bulk, while living on a de Sitter geometry. The
non-relativistic limit of these invariants naturally maintain a generalized
Galileon symmetry around de Sitter while being free of ghost-like pathologies.
We comment briefly on the cosmology of these models and the extension to the
AdS symmetry as well as generic FRW backgrounds
Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models
In the Horndeski's most general scalar-tensor theories with second-order
field equations, we derive the conditions for the avoidance of ghosts and
Laplacian instabilities associated with scalar, tensor, and vector
perturbations in the presence of two perfect fluids on the flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) background. Our general results are
useful for the construction of theoretically consistent models of dark energy.
We apply our formulas to extended Galileon models in which a tracker solution
with an equation of state smaller than -1 is present. We clarify the allowed
parameter space in which the ghosts and Laplacian instabilities are absent and
we numerically confirm that such models are indeed cosmologically viable.Comment: 18 pages, 6 figure
Generalizing Galileons
The Galileons are a set of terms within four-dimensional effective field
theories, obeying symmetries that can be derived from the dynamics of a
3+1-dimensional flat brane embedded in a 5-dimensional Minkowski Bulk. These
theories have some intriguing properties, including freedom from ghosts and a
non-renormalization theorem that hints at possible applications in both
particle physics and cosmology. In this brief review article, we will summarize
our attempts over the last year to extend the Galileon idea in two important
ways. We will discuss the effective field theory construction arising from
co-dimension greater than one flat branes embedded in a flat background - the
multiGalileons - and we will then describe symmetric covariant versions of the
Galileons, more suitable for general cosmological applications. While all these
Galileons can be thought of as interesting four-dimensional field theories in
their own rights, the work described here may also make it easier to embed them
into string theory, with its multiple extra dimensions and more general
gravitational backgrounds.Comment: 16 pages; invited brief review article for a special issue of
Classical and Quantum Gravity. Submitted to CQ
- …