103 research outputs found

    Profiles of Strong Permitted Lines in Classical T Tauri Stars

    Full text link
    We present a spectral analysis of 30 T Tauri stars observed with the Hamilton echelle spectrograph over more than a decade. One goal is to test magnetospheric accretion model predictions. Observational evidence previously published supporting the model, such as emission line asymmetry and a high frequency of redshifted absorption components, are considered. We also discuss the relation between different line forming regions and search for good accretion rate indicators. In this work we confirm several important points of the models, such as the correlation between accretion and outflow, broad emission components that are mostly central or slightly blueshifted and only the occasional presence of redshifted absorption. We also show, however, that the broad emission components supposedly formed in the magnetospheric accretion flow only partially support the models. Unlike the predictions, they are sometimes redshifted, and are mostly found to be symmetric. The published theoretical profiles do not have a strong resemblance to our observed ones. We emphasize the need for accretion models to include a strong turbulent component before their profiles will match the observations. The effects of rotation, and the outflow components, will also be needed to complete the picture.Comment: 25 pages including 9 figures, 3 tables, accepted for publication in the Astronomical Journa

    Measuring Fundamental Parameters of Substellar Objects. II: Masses and Radii

    Full text link
    We present mass and radius derivations for a sample of very young, mid- to late M, low-mass stellar and substellar objects in Upper Sco and Taurus. In a previous paper, we determined effective temperatures and surface gravities for these targets, from an analysis of their high-resolution optical spectra and comparisons to the latest synthetic spectra. We now derive extinctions, radii, masses and luminosities by combining our previous results with observed photometry, surface fluxes from the synthetic spectra and the known cluster distances. These are the first mass and radius estimates for young, very low mass bodies that are independent of theoretical evolutionary models (though our estimates do depend on spectral modeling). We find that for most of our sample, our derived mass-radius and mass-luminosity relationships are in very good agreement with the theoretical predictions. However, our results diverge from the evolutionary model values for the coolest, lowest-mass targets: our inferred radii and luminosities are significantly larger than predicted for these objects at the likely cluster ages, causing them to appear much younger than expected. We suggest that uncertainties in the evolutionary models - e.g., in the choice of initial conditions and/or treatment of interior convection - may be responsible for this discrepancy. Finally, two of our late-M objects (USco 128 and 130) appear to have masses close to the deuterium-fusion boundary (9--14 Jupiters, within a factor of 2). This conclusion is primarily a consequence of their considerable faintness compared to other targets with similar extinction, spectral type and temperature (difference of 1 mag). Our result suggests that the faintest young late-M or cooler objects may be significantly lower in mass than the current theoretical tracks indicate.Comment: 54 pages, incl. 5 figs, accepted Ap

    X-ray Properties of Pre--Main-Sequence Stars in the Orion Nebula Cluster with Known Rotation Periods

    Full text link
    We re-analyze all archival Chandra/ACIS observations of the Orion Nebula Cluster (ONC) to study the X-ray properties of a large sample of pre--main-sequence (PMS) stars with optically determined rotation periods. Our goal is to elucidate the origins of X-rays in PMS stars by seeking out connections between the X-rays and the mechanisms most likely driving their production--rotation and accretion. In our sample X-ray luminosity is significantly correlated with stellar rotation, in the sense of decreasing Lx/Lbol with more rapid rotation, suggesting that these stars are in the "super-saturated" regime of the rotation-activity relationship. However, we also find that stars with optical rotation periods are significantly biased to high Lx. This is not the result of magnitude bias in the optical rotation-period sample but rather to the diminishingly small amplitude of optical variations in stars with low Lx. Evidently, there exists in the ONC a population of stars whose rotation periods are unknown and that possess lower average X-ray luminosities than those of stars with known rotation periods. These stars may sample the linear regime of the rotation-activity relationship. Accretion also manifests itself in X-rays, though in a somewhat counterintuitive fashion: While stars with spectroscopic signatures of accretion show harder X-ray spectra than non-accretors, they show lower X-ray luminosities and no enhancement of X-ray variability. We interpret these findings in terms of a common origin for the X-ray emission observed from both accreting and non-accreting stars, with the X-rays from accreting stars simply being attenuated by magnetospheric accretion columns. This suggests that X-rays from PMS stars have their origins primarily in chromospheres, not accretion.Comment: Accepted by the Astronomical Journal. 43 pages, 16 figure

    Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga

    Full text link
    We present high resolution optical spectra obtained with the HIRES spectrograph on the Keck I telescope of low mass T Tauri stars and brown dwarfs (LMTTs) in Taurus-Auriga. Of particular interest is the previously classified "continuum T Tauri star" GM Tau, which has a spectral type of M6.5 and a mass just below the stellar/substellar boundary. None of the LMTTs in Taurus are rapidly rotating (vsini < 30 km/s), unlike low mass objects in Orion. Many of the slowly rotating, non-accreting stars and brown dwarfs exhibit prominent H-alpha emission (EWs of 3 - 36 A), indicative of active chromospheres. We demonstrate empirically that the full-width at 10% of the H-alpha emission profile peak is a more practical and possibly more accurate indicator of accretion than either the equivalent width of H-alpha or optical veiling: 10%-widths > 270 km/s are classical T Tauri stars (i.e. accreting), independent of stellar spectral type. Although LMTTs can have accretion rates comparable to that of more typical, higher-mass T Tauri stars (e.g. K7-M0), the average mass accretion rate appears to decrease with decreasing mass. The diminished frequency of accretion disks for LMTTs, in conjunction with their lower, on average, mass accretion rates, implies that they are formed with less massive disks than higher-mass T Tauri stars. The radial velocities, circumstellar properties and known binaries do not support the suggestion that many of the lowest mass members of Taurus have been ejected from higher stellar density regions within the cloud. Instead, LMTTs appear to have formed and are evolving in the same way as higher-mass T Tauri stars, but with smaller disks and shorter disk lifetimes.Comment: 27 pages, plus 8 figures, accepted for publication in Ap

    An Effective Temperature Scale for Late M and L Dwarfs, from Resonance Absorption Lines of CsI and RbI

    Full text link
    We present Keck HIRES spectra of 6 late-M dwarfs and 11 L dwarfs. Our goal is to assign effective temperatures to the objects using detailed atmospheric models and fine analysis of the alkali resonance absorption lines of CsI and RbI. These yield mutually consistent results (+-150 K) when we use ``cleared-dust'' models, which account for the removal of refractory species from the molecular states but do not include dust opacities. We find a tendency for the RbI line to imply a slightly higher temperature, which we ascribe to an incomplete treatment of the overlying molecular opacities. The final effective temperatures we adopt are based on the CsI fits alone, though the RbI fits support the CsI temperature sequence. This work, in combination with results from the infrared, hints that dust in these atmospheres has settled out of the high atmosphere but is present in the deep photosphere. We also derive radial and rotational velocities for all the objects, finding that the previously discovered trend of rapid rotation for very low mass objects is quite pervasive. To improve on our analysis, there is a clear need for better molecular line lists and a more detailed understanding of dust formation and dynamics.Comment: 53 pages, including 20 figures and 2 Tables; accepted in Ap

    Observations of T-Tauri Stars using HST-GHRS: I. Far Ultraviolet Emission Lines

    Get PDF
    We have analyzed GHRS data of eight CTTS and one WTTS. The GHRS data consists of spectral ranges 40 A wide centered on 1345, 1400, 1497, 1550, and 1900 A. These UV spectra show strong SiIV, and CIV emission, and large quantities of sharp (~40 km/s) H2 lines. All the H2 lines belong to the Lyman band and all the observed lines are single peaked and optically thin. The averages of all the H2 lines centroids for each star are negative which may indicate that they come from an outflow. We interpret the emission in H2 as being due to fluorescence, mostly by Ly_alpha, and identify seven excitation routes within 4 A of that line. We obtain column densities (10^12 to 10^15 cm^-2) and optical depths (~1 or less) for each exciting transition. We conclude that the populations are far from being in thermal equilibrium. We do not observe any lines excited from the far blue wing of Ly_alpha, which implies that the molecular features are excited by an absorbed profile. SiIV and CIV (corrected for H2 emission) have widths of ~200 km/s, and an array of centroids (blueshifted lines, centered, redshifted). These characteristics are difficult to understand in the context of current models of the accretion shock. For DR Tau we observe transient strong blueshifted emission, perhaps the a result of reconnection events in the magnetosphere. We also see evidence of multiple emission regions for the hot lines. While CIV is optically thin in most stars in our sample, SiIV is not. However, CIV is a good predictor of SiIV and H2 emission. We conclude that most of the flux in the hot lines may be due to accretion processes, but the line profiles can have multiple and variable components.Comment: 67 pages, 19 figures, Accepted in Ap
    • 

    corecore