527 research outputs found

    Distances on a one-dimensional lattice from noncommutative geometry

    Full text link
    In the following paper we continue the work of Bimonte-Lizzi-Sparano on distances on a one dimensional lattice. We succeed in proving analytically the exact formulae for such distances. We find that the distance to an even point on the lattice is the geometrical average of the ``predecessor'' and ``successor'' distances to the neighbouring odd points.Comment: LaTeX file, few minor typos corrected, 9 page

    Distances on a Lattice from Non-commutative Geometry

    Full text link
    Using the tools of noncommutative geometry we calculate the distances between the points of a lattice on which the usual discretized Dirac operator has been defined. We find that these distances do not have the expected behaviour, revealing that from the metric point of view the lattice does not look at all as a set of points sitting on the continuum manifold. We thus have an additional criterion for the choice of the discretization of the Dirac operator.Comment: 14 page

    Looking for a time independent Hamiltonian of a dynamical system

    Get PDF
    In this paper we introduce a method for finding a time independent Hamiltonian of a given dynamical system by canonoid transformation. We also find a condition that the system should satisfy to have an equivalent time independent formulation. We study the example of damped oscillator and give the new time independent Hamiltonian for it, which has the property of tending to the standard Hamiltonian of the harmonic oscillator as damping goes to zero.Comment: Some references added, LATEX fixing

    A New Stochastic Strategy for the Minority Game

    Full text link
    We present a variant of the Minority Game in which players who where successful in the previous timestep stay with their decision, while the losers change their decision with a probability pp. Analytical results for different regimes of pp and the number of players NN are given and connections to existing models are discussed. It is shown that for p1/Np \propto 1/N the average loss σ2\sigma^2 is of the order of 1 and does not increase with NN as for other known strategies.Comment: 4 pages, 3 figure

    Exact Evolution Operator on Non-compact Group Manifolds

    Full text link
    Free quantal motion on group manifolds is considered. The Hamiltonian is given by the Laplace -- Beltrami operator on the group manifold, and the purpose is to get the (Feynman's) evolution kernel. The spectral expansion, which produced a series of the representation characters for the evolution kernel in the compact case, does not exist for non-compact group, where the spectrum is not bounded. In this work real analytical groups are investigated, some of which are of interest for physics. An integral representation for the evolution operator is obtained in terms of the Green function, i.e. the solution to the Helmholz equation on the group manifold. The alternative series expressions for the evolution operator are reconstructed from the same integral representation, the spectral expansion (when exists) and the sum over classical paths. For non-compact groups, the latter can be interpreted as the (exact) semi-classical approximation, like in the compact case. The explicit form of the evolution operator is obtained for a number of non-compact groups.Comment: 32 pages, 5 postscript figures, LaTe

    Majorana spinors and extended Lorentz symmetry in four-dimensional theory

    Full text link
    An extended local Lorentz symmetry in four-dimensional (4D) theory is considered. A source of this symmetry is a group of general linear transformations of four-component Majorana spinors GL(4,M) which is isomorphic to GL(4,R) and is the covering of an extended Lorentz group in a 6D Minkowski space M(3,3) including superluminal and scaling transformations. Physical space-time is assumed to be a 4D pseudo-Riemannian manifold. To connect the extended Lorentz symmetry in the M(3,3) space with the physical space-time, a fiber bundle over the 4D manifold is introduced with M(3,3) as a typical fiber. The action is constructed which is invariant with respect to both general 4D coordinate and local GL(4,M) spinor transformations. The components of the metric on the 6D fiber are expressed in terms of the 4D pseudo-Riemannian metric and two extra complex fields: 4D vector and scalar ones. These extra fields describe in the general case massive particles interacting with an extra U(1) gauge field and weakly interacting with ordinary particles, i.e. possessing properties of invisible (dark) matter.Comment: 24 page

    Matrix Pencils and Entanglement Classification

    Full text link
    In this paper, we study pure state entanglement in systems of dimension 2mn2\otimes m\otimes n. Two states are considered equivalent if they can be reversibly converted from one to the other with a nonzero probability using only local quantum resources and classical communication (SLOCC). We introduce a connection between entanglement manipulations in these systems and the well-studied theory of matrix pencils. All previous attempts to study general SLOCC equivalence in such systems have relied on somewhat contrived techniques which fail to reveal the elegant structure of the problem that can be seen from the matrix pencil approach. Based on this method, we report the first polynomial-time algorithm for deciding when two 2mn2\otimes m\otimes n states are SLOCC equivalent. Besides recovering the previously known 26 distinct SLOCC equivalence classes in 23n2\otimes 3\otimes n systems, we also determine the hierarchy between these classes

    Commutator Relations Reveal Solvable Structures in Unambiguous State Discrimination

    Full text link
    We present a criterion, based on three commutator relations, that allows to decide whether two self-adjoint matrices with non-overlapping support are simultaneously unitarily similar to quasidiagonal matrices, i.e., whether they can be simultaneously brought into a diagonal structure with 2x2-dimensional blocks. Application of this criterion to unambiguous state discrimination provides a systematic test whether the given problem is reducible to a solvable structure. As an example, we discuss unambiguous state comparison.Comment: 5 pages, discussion of related work adde

    Tripartite to Bipartite Entanglement Transformations and Polynomial Identity Testing

    Full text link
    We consider the problem of deciding if a given three-party entangled pure state can be converted, with a non-zero success probability, into a given two-party pure state through local quantum operations and classical communication. We show that this question is equivalent to the well-known computational problem of deciding if a multivariate polynomial is identically zero. Efficient randomized algorithms developed to study the latter can thus be applied to the question of tripartite to bipartite entanglement transformations

    Spin Chains as Perfect Quantum State Mirrors

    Full text link
    Quantum information transfer is an important part of quantum information processing. Several proposals for quantum information transfer along linear arrays of nearest-neighbor coupled qubits or spins were made recently. Perfect transfer was shown to exist in two models with specifically designed strongly inhomogeneous couplings. We show that perfect transfer occurs in an entire class of chains, including systems whose nearest-neighbor couplings vary only weakly along the chain. The key to these observations is the Jordan-Wigner mapping of spins to noninteracting lattice fermions which display perfectly periodic dynamics if the single-particle energy spectrum is appropriate. After a half-period of that dynamics any state is transformed into its mirror image with respect to the center of the chain. The absence of fermion interactions preserves these features at arbitrary temperature and allows for the transfer of nontrivially entangled states of several spins or qubits.Comment: Abstract extended, introduction shortened, some clarifications in the text, one new reference. Accepted by Phys. Rev. A (Rapid Communications
    corecore