47 research outputs found

    Effect of dimephosphon on functional recovery of damaged spinal cord

    Get PDF
    The effect of endolumbar dimephosphon perfusion in dogs with spinal cord contusion was studied by means of transcranial magnetic stimulation and stimulation electromyography. Treatment with dimephosphon contributed to preservation of conduction function of the spinal cord and decrease in excitability of spinal motoneurons in the perifocal zone. © Springer Science+Business Media, Inc. 2006

    Effects of NO Synthase Blocker L-NAME on Functional State of the Neuromotor System during Traumatic Disease of the Spinal Cord

    Get PDF
    © 2017, Springer Science+Business Media New York.Functional state of the neuromotor system after administration of a nonspecific NO synthase blocker L-NAME was studied on the model of experimental contusion of the spinal cord. Electron paramagnetic resonance measurements of NO production in the damaged segment of the spinal cord were performed for estimation of the dynamics of intensity of NO production during traumatic disease of the spinal cord and selection of optimal period for L-NAME administration. The status of the neuromotor system was evaluated by stimulation electromyography. Treatment with L-NAME during the acute period of traumatic injury to the spinal cord sharply reduced the intensity of evoked motor responses and more pronounced increase in excitability of peripheral motor structures. The results suggest that NO system is a factor of regulation of the stress-induced and adaptive responses of the body at the early stage of spinal cord injury

    Effects Metilprednizalonium, Motor of Training and a Combination in Change Parameters of M-Response in the Gastrocnemius Muscle of Rats During Acute and Chronic Period After Experimental Spinal Cord Injury

    Get PDF
    © 2016, Springer Science+Business Media New York.An increasing number of treatments for spinal cord injury (SCI) out of the laboratories and in clinical trials pass. Many of them are used as soon as possible after the injury with the hope of weakening the secondary damage and maximize the preservation of nerve tissue. The aim of the study was to evaluate the effects metilprednizalonium and motor training at an experimental spinal cord injury in rats. To investigate the status of the peripheral neuromuscular system registered motor response (M-response) muscles. In the early period after spinal cord injury was observed, a decrease of the maximum amplitude of M-response. With that, in the group of animals with the introduction of metilprednizalonium, amplitude of M-response was higher than that without drug therapy. Combined therapy metilprednizalonium and motor training has a positive effect on the recovery of motor function in chronic period after contusion spinal cord injury in rats

    The Role of ATP-Sensitive Potassium Channels and Nitric Oxide in the Protective Effect of Preconditioning of the Brain

    Get PDF
    © 2017 Springer Science+Business Media, LLC, part of Springer Nature Objective. The role of ATP-dependent potassium (K + ATP ) channels in the neuroprotective effect of ischemic (IPre) and pharmacological (PPre) preconditioning and changes in blood levels of nitric oxide (NO) metabolites were studied in conditions of cerebral ischemia. Materials and methods. Ischemic stroke (IS) was modeled in male rats (n = 86) by electrocoagulation of a branch of the middle cerebral artery (MCA). The nonselective K + ATP channel blocker glibenclamide and the K + ATP channel activator diazoxide were used. IPre and PPre were performed one day before MCA occlusion. Blood concentrations of NO, nitrates (NO 3 – ) and nitrites (NO 2 – ) were determined in experimental animals at 5, 24, and 72 h after MCA occlusion. Results. IPre decreased the lesion zone by 37% (p < 0.05), while prior administration of glibenclamide countered the action of IPre. The protective effect of PPre was analogous to that of IPre. Decreases in blood levels of oxygenated R-conformers of hemoglobin-bound NO (Hb-NO) were seen 5 h after MCA occlusion, with an inversely proportional increase in the concentration of nonoxygenated T-conformers; there were also increases in NO 3 – and NO 2 – concentrations. NO 3 – and NO 2 – levels showed normalization by one day after MCA occlusion, along with changes in the concentrations of Hb-NO complexes – R-conformers dominated, while the blood level of T-conformers reached a minimum. Furthermore, by 24 h there was a correlation between blockade of K + ATP channels and decreases in serum NO 3 – and NO 2 – levels (p < 0.03). Conclusions. The neuroprotective effect of preconditioning was due to activation of K + ATP channels. Analysis of blood levels of NO metabolites in rats with IS showed that Hb-NO complexes in the R-conformation stored and carried NO to the tissues, releasing NO on occurrence of the R → T transition in ischemic conditions

    Changes in nitric oxide in heart of intact and sympathectomized rats of different age

    Get PDF
    Nitric oxide production in heart tissues of rats of different age in the norm and after pharmacological sympathectomy was studied by electron spin resonance spin-trapping. Rats at the age of 14, 21, 70, and 100 days were used in the experiment. The concentration of nitric oxide produced in rat heart tissues proved to considerably decrease during ontogeny. Pharmacological sympathectomy notably decreased nitric oxide production in the heart in 14-and 21-day-old rats: the nitric oxide concentration in the spin trap as well as the level of R and T conformers of hemoglobin nitrosyl complexes decreased. In 70-day-old rats, pharmacological sympathectomy had no notable effect on the level of nitric oxide-containing paramagnetic complexes. © 2008 MAIK Nauka

    Changes of Nitric Oxide Content in the Rat Hippocampus, Heart and Liver in Acute Phase of Ischemia

    Get PDF
    © 2016, Springer-Verlag Wien.Electron paramagnetic resonance (EPR) was used as a method to record nitric oxide (NO) production in the tissues of the brain, heart and liver of healthy rats, and rats after modeling of ischemic stroke. Direct measurement of the dynamics of NO production by EPR spectroscopy in our experiments showed that after the emergence of signs of ischemic stroke, 5 h after the start of ischemia, the content of NO in the hippocampus decreased two- to threefold and this decrease was maintained at 24 and 72 h. Deserving special attention is the data demonstrating that there is a greater decrease of NO production in the tissues of the heart and liver than in the brain. Consequently, the change in intensity of NO production in the modeling of ischemic events in the brain has a systemic, not a local character

    Electrophysiological, morphological, and ultrastructural features of the injured spinal cord tissue after transplantation of human umbilical cord blood mononuclear cells genetically modified with the VEGF and GDNF genes

    Get PDF
    © 2017 Y. O. Mukhamedshina et al.In this study, we examined the efficacy of human umbilical cord blood mononuclear cells (hUCB-MCs), genetically modified with the VEGF and GDNF genes using adenoviral vectors, on posttraumatic regeneration after transplantation into the site of spinal cord injury (SCI) in rats. Thirty days after SCI, followed by transplantation of nontransduced hUCB-MCs, we observed an improvement in H (latency period, LP) and M(Amax) waves, compared to the group without therapy after SCI. For genetically modified hUCB-MCs, there was improvement in Amax of M wave and LP of both the M and H waves. The ratio between Amax of the H and M waves (Hmax/Mmax) demonstrated that transplantation into the area of SCI of genetically modified hUCB-MCs was more effective than nontransduced hUCB-MCs. Spared tissue and myelinated fibers were increased at day 30 after SCI and transplantation of hUCB-MCs in the lateral and ventral funiculi 2.5 mm from the lesion epicenter. Transplantation of hUCB-MCs genetically modified with the VEGF and GNDF genes significantly increased the number of spared myelinated fibers (22-fold, P>0.01) in the main corticospinal tract compared to the nontransduced ones. HNA+ cells with the morphology of phagocytes and microglia-like cells were found as compact clusters or cell bridges within the traumatic cavities that were lined by GFAP+ host astrocytes. Our results show that hUCB-MCs transplanted into the site of SCI improved regeneration and that hUCB-MCs genetically modified with the VEGF and GNDF genes were more effective than nontransduced hUCB-MCs

    Nitric Oxide Production in the Rat Spinal Cord, Heart, and Liver After Spinal Cord Injury

    No full text
    © 2016, Springer Science+Business Media New York.It has been shown that after 5 h of spinal cord injury, there is a decrease of nitric oxide (NO) production in the spinal cord. Seventy-two hours after the spinal cord injury, the level of NO production in the spinal cord and the heart increases by 2.5 times, and in the liver, it increases threefold. In the chronic period of a traumatic spinal cord disease in the spinal cord tissue, the level of NO production was significantly higher than at the control level
    corecore