1,260 research outputs found

    Possible isotope effect on the resonance peak formation in high-Tc_c cuprates

    Full text link
    Starting from the three-band pdp-d Hubbard Hamiltonian we derive an effective tJt-J model including electron-phonon interaction of quasiparticles with optical phonons. Within the effective Hamiltonian we analyze the influence of electronic correlations and electron-phonon interaction on the dynamical spin susceptibility in layered cuprates. We find a huge isotope effect on the resonance peak in the magnetic spin susceptibility, Imχ(q,ω){Im}\chi({\bf q},\omega), seen by inelastic neutron scattering. It results from both the electron-phonon coupling and the electronic correlation effects taken into account beyond random phase approximation(RPA) scheme. We find at optimal doping the isotope coeffiecient αres0.35\alpha_{res} \approx 0.35 which can be further tested experimentally.Comment: revised version, new figure is added. Phys. Rev. B 69, 0945XX (2004); in pres

    Angular resolved specific heat in iron-based superconductors: the case for nodeless extended ss-wave gap

    Full text link
    We consider the variation of the field-induced component of the specific heat C(H)C({\bf H}) with the direction of the applied field in FeFe-pnictides within quasi-classical Doppler-shift approximation, with special emphasis to recent experiments on FeSe0.4_{0.4}Te0.6_{0.6} [Zheng et al., arXiv:1004.2236]. We show that for extended ss-wave gap with no nodes, C(H)C({\bf H}) has cos4ϕ\cos 4 \phi component, where ϕ\phi is the angle between H{\bf H} and the direction between hole and electron Fermi surfaces. The maxima of C(H)C({\bf H}) are at π/4\pi/4, 3π/43\pi/4, etc. if the applied field is smaller than H01TH_0 \leq 1T, and at ϕ=0,π/2\phi =0, \pi/2, etc. if the applied field is larger than H0H_0. The angle-dependence of C(H)C({\bf H}), the positions of the maxima, and the relative magnitude of the oscillating component are consistent with the experiments performed in the field of 9T>>H09T >> H_0. We show that the observed cos4ϕ\cos 4 \phi variation does not hold if the ss-wave gap has accidental nodes along the two electron Fermi surfaces.Comment: 5 pages, 4 figure

    Unconventional superconductivity and magnetism in Sr2_2RuO4_4 and related materials

    Full text link
    We review the normal and superconducting state properties of the unconventional triplet superconductor Sr2_2RuO4_4 with an emphasis on the analysis of the magnetic susceptibility and the role played by strong electronic correlations. In particular, we show that the magnetic activity arises from the itinerant electrons in the Ru dd-orbitals and a strong magnetic anisotropy occurs (χ+<χzz\chi^{+-} < \chi^{zz}) due to spin-orbit coupling. The latter results mainly from different values of the gg-factor for the transverse and longitudinal components of the spin susceptibility (i.e. the matrix elements differ). Most importantly, this anisotropy and the presence of incommensurate antiferromagnetic and ferromagnetic fluctuations have strong consequences for the symmetry of the superconducting order parameter. In particular, reviewing spin fluctuation-induced Cooper-pairing scenario in application to Sr2_2RuO4_4 we show how p-wave Cooper-pairing with line nodes between neighboring RuO2_2-planes may occur. We also discuss the open issues in Sr2_2RuO4_4 like the influence of magnetic and non-magnetic impurities on the superconducting and normal state of Sr2_2RuO4_4. It is clear that the physics of triplet superconductivity in Sr2_2RuO4_4 is still far from being understood completely and remains to be analyzed more in more detail. It is of interest to apply the theory also to superconductivity in heavy-fermion systems exhibiting spin fluctuations.Comment: short review article. Annalen der Physik, vol. 13 (2004), to be publishe

    Multiband Superconductivity in Spin Density Wave Metals

    Full text link
    We study the emergence of multiband superconductivity with ss- and dd-wave symmetry on the background of spin density wave (SDW). We show that the SDW coherence factors renormalize the momentum dependence of the superconducting (SC) gap, yielding a SC state with an \emph{unconventional} s-wave symmetry. Interband Cooper pair scattering stabilizes superconductivity in both symmetries. With increasing SDW order, the s-wave state is more strongly suppressed than the d-wave state. Our results are universally applicable to two-dimensional systems with a commensurate SDW.Comment: 4 pages, 3 figure

    Magnetic field dependence of the superconducting gap node topology in non-centrosymmetric CePt3_3Si

    Full text link
    The non-centrosymmetric superconductor CePt3_3Si is believed to have a line node in the energy gap arising from coexistence of s-wave and p-wave pairing. We show that a weak c-axis magnetic field will remove this line node, since it has no topological stability against time-reversal symmetry breaking perturbations. Conversely a field in the aba-b plane is shown to remove the line node on some regions of the Fermi surface, while bifurcating the line node in other directions, resulting in two 'boomerang'-like shapes. These line node topological changes are predicted to be observable experimentally in the low temperature heat capacity.Comment: 4 pages, 3 figure

    A fibre forming smectic twist-bent liquid crystalline phase

    Get PDF
    We demonstrate the nanostructure and filament formation of a novel liquid crystal phase of a dimeric mesogen below the twist–bend nematic phase. The new fibre-forming phase is distinguished by a short-correlated smectic order combined with an additional nanoscale periodicity that is not associated with density modulation

    Dynamical charge susceptibility in layered cuprates: the influence of screened inter-site Coulomb repulsion

    Full text link
    The analytical expression for dynamical charge susceptibility in layered cuprates has been derived in the frame of singlet-correlated band model beyond random-phase-approximation (RPA) scheme. Our calculations performed near optimal doping regime show that there is a peak in real part of the charge susceptibility χ(q,ω)\chi({\bf q},\omega) at {\bf Q} = (π\pi, π\pi) at strong enough inter-site Coulomb repulsion. Together with the strong maximum in the Im χ(Q,ω)\chi({\bf Q},\omega) at 15 meV it confirms the formation of low-energetic plasmons or charge fluctuations. This provides a jsutification that these excitations are important and together with a spin flcutuations can contribute to the Cooper pairing in layered cuprates. Analysing the charge susceptibilitiy with respect to an instability we obtain a new plasmon branch, ωq\omega_{\bf q}, along the Brillouin Zone. In particular, we have found that it goes to zero near {\bf Q}CDW(2π/3,2π/3)_{CDW} \approx (2\pi/3, 2\pi/3)

    Polaron Effects on Superexchange Interaction: Isotope Shifts of TNT_N, TCT_C, and TT^* in Layered Copper Oxides

    Full text link
    A compact expression has been obtained for the superexchange coupling of magnetic ions via intermediate anions with regard to polaron effects at both magnetic ions and intermediate anions. This expression is used to analyze the main features of the behavior of isotope shifts for temperatures of three types in layered cuprates: the Neel temperatures (TNT_N), critical temperatures of transitions to a superconducting state (TCT_C), and characteristic temperatures of the pseudogap in the normal state (TT^*).Comment: 4 pages, 1 figur

    Spin susceptibility in bilayered cuprates: resonant magnetic excitations

    Full text link
    We study the momentum and frequency dependence of the dynamical spin susceptibility in the superconducting state of bilayer cuprate superconductors. We show that there exists a resonance mode in the odd as well as the even channel of the spin susceptibility, with the even mode being located at higher energies than the odd mode. We demonstrate that this energy splitting between the two modes arises not only from a difference in the interaction, but also from a difference in the free-fermion susceptibilities of the even and odd channels. Moreover, we show that the even resonance mode disperses downwards at deviations from Q=(π,π){\bf Q}=(\pi,\pi). In addition, we demonstrate that there exists a second branch of the even resonance, similar to the recently observed second branch (the QQ^*-mode) of the odd resonance. Finally, we identify the origin of the qualitatively different doping dependence of the even and odd resonance. Our results suggest further experimental test that may finally resolve the long-standing question regarding the origin of the resonance peak.Comment: 8 pages, 5 figure
    corecore