42 research outputs found

    Photoinduced ordering and anchoring properties of azo-dye films

    Full text link
    We study both theoretically and experimentally anchoring properties of photoaligning azo-dye films in contact with a nematic liquid crystal depending on photoinduced ordering of azo-dye molecules. In the mean field approximation, we found that the bare surface anchoring energy linearly depends on the azo-dye order parameter and the azimuthal anchoring strength decays to zero in the limit of vanishing photoinduced ordering. From the absorption dichroism spectra measured in the azo-dye films that are prepared from the azo-dye derivative with polymerizable terminal groups (SDA-2) we obtain dependence of the dichroic ratio on the irradiation dose. We also measure the polar and azimuthal anchoring strengths in nematic liquid crystal (NLC) cells aligned by the azo-dye films and derive the anchoring strengths as functions of the dichroic ratio. Though linear fitting of the experimental data for both anchoring strengths gives reasonably well results, it, in contradiction with the theory, predicts vanishing of the azimuthal anchoring strength at certain nonzero value of the azo-dye order parameter. By using a simple phenomenological model we show that this discrepancy can be attributed to the difference between the surface and bulk order parameters in the films.Comment: revtex4, 25 pages, 9 figure

    Kinetics of photoinduced ordering in azo-dye films: two-state and diffusion models

    Full text link
    We study the kinetics of photoinduced ordering in the azo-dye SD1 photoaligning layers and present the results of modeling performed using two different phenomenological approaches. A phenomenological two state model is deduced from the master equation for an ensemble of two-level molecular systems. Using an alternative approach, we formulate the two-dimensional (2D) diffusion model as the free energy Fokker-Planck equation simplified for the limiting regime of purely in-plane reorientation. The models are employed to interpret the irradiation time dependence of the absorption order parameters extracted from the available experimental data by using the exact solution to the light transmission problem for a biaxially anisotropic absorbing layer. The transient photoinduced structures are found to be biaxially anisotropic whereas the photosteady and the initial states are uniaxial.Comment: revtex4, 34 pages, 9 figure

    Photoinduced reordering in thin azo-dye films and light-induced reorientation dynamics of nematic liquid-crystal easy axis

    Full text link
    We theoretically study the kinetics of photoinduced reordering triggered by linearly polarized (LP) reorienting light in thin azo-dye films that were initially illuminated with LP ultraviolet (UV) pumping beam. The process of reordering is treated as a rotational diffusion of molecules in the light intensity-dependent mean-field potential. The two dimensional diffusion model which is based on the free energy rotational Fokker-Planck equation and describes the regime of in-plane reorientation is generalized to analyze the dynamics of the azo-dye order parameter tensor at varying polarization azimuth of the reorienting light. It is found that, in the photosteady state, the intensity of LP reorienting light determines the scalar order parameter (the largest eigenvalue of the order parameter tensor), whereas the steady state orientation of the corresponding eigenvector (the in-plane principal axis) depends solely on the polarization azimuth. We show that, under certain conditions, reorientation takes place only if the reorienting light intensity exceeds its critical value. Such threshold behavior is predicted to occur in the bistability region provided that the initial principal axis lies in the polarization plane of reorienting light. The model is used to interpret the experimental data on the light-induced azimuthal gliding of liquid-crystal easy axis on photoaligned azo-dye substrates.Comment: 27 pages, 11 fugure

    Control of topological defects in microstructured liquid crystal cells

    No full text
    We study how the propagation of light inside recently developed micro-structured cells, can be actively tuned by polarising the nanoscale defects in the nematic liquid crystals they contain. Our ‘planar-spherical’ cells are formed by assembling a planar and a gold-coated hemispherical micro-mirror. Optical reflection images of the back-reflected polarised light show a remarkable change of symmetry as a function of the voltage applied to the cell. Theoretical models of the alignment of the liquid crystal within the cell indicate that the constraints imposed on the liquid crystal by the cell geometry and by the applied electric field induces the formation of defects. Their motion under the effect of the applied electric field is responsible for the change of symmetry of the back-reflected light. Furthermore, experimental measurements of the relaxation time of the back-reflected intensity indicate that the motion of the defect in our micro-structured cells is much faster than in equivalent planar cells

    Demonstration of 100 GHz electrically tunable liquid-crystal Bragg gratings for application in dynamic optical networks

    No full text
    We demonstrate liquid crystal-based integrated optical devices with >140GHz electrical tuning for potential applications in dynamic optical networks. Bragg wavelength tuning covering five 25GHz WDM channel spacings has been achieved with 170V (peak-to-peak) sinusoidal voltages applied across electro-patterned ITO-covered glass electrodes placed 60µm apart. This tunability range was limited only by the initial grating strength and supply voltage level. We also observed two distinct threshold behaviors that manifest during increase of supply voltage, resulting in a hysteresis in the tuning curve for both TE and TM input light

    Structured, photosensitive PVK and PVCN polymer layers for control of liquid crystal alignment

    No full text
    We present characteristics of liquid crystal reorientation in cells with alignment layers made of different poly(vinyl)-type polymers. Mechanically-rubbed poly(N-vinyl carbazole) (PVK) produces planar alignment of liquid crystals with easy axis orthogonal to the rubbing direction and zero pretilt angle. Doping PVK with C60 makes this liquid crystal–polymer system extremely photosensitive for visible wavelengths. Illumination with a Gaussian beam reveals a complex structure of patterns of reoriented liquid crystal molecules. Using poly(vinyl-cinnamate) (PVCN), exposed to UV light, a periodic alignment of liquid crystals can be achieved via this all-optical method

    Voltage-driven in-plane steering of nematicons

    No full text
    Using an external voltage and interdigitated electrodes in a liquid crystalline cell, we demonstrate tunable steering of light beams and spatial solitons without the detrimental walk-off out of the plane of propagation. The results agree well with a simple model describing birefringence and reorientation in uniaxial nematic liquid crystal
    corecore