6,814 research outputs found
Observation and its History
Recenze: Lorraine DASTON - Elizabeth LUNBECK, E., Histories of Scientific Observation. Chicago - London: University of Chicago Press 2011, 460 pp
Institutions and Dissent: Historical Geology in the Early Royal Society
The paper aims to ques- tion the traditional view of the early Royal Society of London, the oldest scientific institution in continuous existence. According to that view, the institutional life of the Society in the early decades of activity was characterized by a strictly Baconian methodology. But the re- construction of the discussions about fossils and natural history within the Society shows that this monolithic image is far from being correct. Despite the persistent reference to the Baconian Solomon House, the Society did not impose or support a common programme of research in the field of the natural history of the Earth
A thermodynamically consistent derivation of a frictional-damage cohesive-zone model with different mode i and mode II fracture energies
The present paper deals with the derivation of an interface model characterized by macroscopic fracture energies which are different in modes I and II, the macroscopic fracture energy being the total energy dissipated per unit of fracture area. It is first shown that thermo-dynamical consistency for a model governed by a single damage variable, combined with the choice of employing an equivalent relative displacement and of a linear softening in the stress-relative displacement law, leads to the coincidence of fracture energies in modes I and II. To retrieve the experimental evidence of a greater fracture energy in mode II, a micro-structured geometry is considered at the typical point of the interface where a Representative Interface Element (RIE) characterized by a periodic arrangement of distinct inclined planes is introduced. The interaction within each of these surfaces is governed by a coupled damage-friction law. A sensitivity analysis of the correlation between micromechanical parameters and the numerically computed single-point microstructural response in mode II is reported. An assessment of the capability of the model in predicting different mixed mode fracture energies is carried out both at the single microstructural interface point level and with a structural example. For the latter a double cantilever beam with uneven bending moments has been analyzed and numerical results are compared with experimental data reported in the literature for different values of mode mixity. © 2014 Elsevier Masson SAS. All rights reserved
The double population of Chamaeleon I detected by Gaia DR2
Context. Chamaeleon I represents an ideal laboratory to study the cluster
formation in a low-mass environment. Recently, two sub clusters spatially
located in the northern and southern parts of Chamaeleon I were found with
different ages and radial velocities. Aims. In this letter we report new
insights into the structural properties, age, and distance of Chamaeleon I
based on the astrometric parameters from Gaia data-release 2 (DR2). Methods. We
identified 140 sources with a reliable counterpart in the Gaia DR2 archive. We
determined the median distance of the cluster using Gaia parallaxes and fitted
the distribution of parallaxes and proper motions assuming the presence of two
clusters. We derived the probability of each single source of belonging to the
northern or southern sub-clusters, and compared the HR diagram of the most
probable members to pre-main sequences isochrones. Results. The median distance
of Chamaeleon I is ~190 pc. This is about 20 pc larger than the value commonly
adopted in the literature. From a Kolmogorov-Smirnov test of the parallaxes and
proper-motion distributions we conclude that the northern and southern clusters
do not belong to the same parent population. The northern population has a
distance dN = 192.7+/-0.4 pc, while the southern one dS = 186.5+/-0.7 pc. The
two sub-clusters appear coeval, at variance with literature results, and most
of the sources are younger than 3 Myr. The northern cluster is more elongated
and extends towards the southern direction partially overlapping with the more
compact cluster located in the south. A hint of a relative rotation between the
two sub-clusters is also found.Comment: Letter accepted by A&
Bond-slip analysis via a cohesive-zone model simulating damage, friction and interlocking
A recently proposed cohesive-zone model which effectively combines damage, friction and mechanical interlocking has been revisited and further validated by numerically simulating the pull-out test, from a concrete block, of a ribbed steel bar in the post-yield deformation range. The simulated response is in good agreement with experimental measurements of the bond slip characteristics in the post-yield range of deformed bars reported in the literature. This study highlights the main features of the model: with physically justified and relatively simple arguments, and within the sound framework of thermodynamics with internal variables, the model effectively separates the three main sources of energy dissipation, i.e. loss of adhesion, friction along flat interfaces and mechanical interlocking. This study provides further evidence that the proposed approach allows easier and physically clearer procedures for the determination of the model parameters of such three elementary mechanical behaviours, and makes possible their interpretation and measurement as separate material property, as a viable alternative to lumping these parameters into single values of the fracture energy. In particular, the proposed approach allows to consider a single value of the adhesion energy for modes I and II
The Multiple Young Stellar Objects of HBC 515: An X-ray and Millimeter-wave Imaging Study in (Pre-main Sequence) Diversity
We present Chandra X-ray Observatory and Submillimeter Array (SMA) imaging of
HBC 515, a system consisting of multiple young stellar objects (YSOs). The five
members of HBC 515 represent a remarkably diverse array of YSOs, ranging from
the low-mass Class I/II protostar HBC 515B, through Class II and transition
disk objects (HBC 515D and C, respectively), to the "diskless", intermediate-
mass, pre-main sequence binary HBC 515A. Our Chandra/ACIS imaging establishes
that all five components are X-ray sources, with HBC 515A - a
subarcsecond-separation binary that is partially resolved by Chandra - being
the dominant X-ray source. We detect an X-ray flare associated with HBC 515B.
In the SMA imaging, HBC 515B is detected as a strong 1.3 mm continuum emission
source; a second, weaker mm continuum source is coincident with the position of
the transition disk object HBC 515C. These results strongly support the
protostellar nature of HBC 515B, and firmly establish HBC 515A as a member of
the rare class of relatively massive, X-ray luminous "weak-lined T Tauri stars"
that are binaries and have shed their disks at very early stages of pre-MS
evolution. The coexistence of two such disparate objects within a single,
presumably coeval multiple YSO system highlights the influence of pre- MS star
mass, binarity, and X-ray luminosity in regulating the lifetimes of
circumstellar, planet-forming disks and the timescales of star-disk
interactions.Comment: Accepted for publication in A&A; 11 pages, 5 figure
Evidence for Variable, Correlated X-ray and Optical/IR Extinction toward the Nearby, Pre-main Sequence Binary TWA 30
We present contemporaneous XMM-Newton X-ray and ground-based optical/near-IR
spectroscopic observations of the nearby ( pc), low-mass (mid-M)
binary system TWA 30A and 30B. The components of this wide (separation
3400 AU) binary are notable for their nearly edge-on disk viewing
geometries, high levels of variability, and evidence for collimated stellar
outflows. We obtained XMM-Newton X-ray observations of TWA 30A and 30B in 2011
June and July, accompanied (respectively) by IRTF SpeX (near-IR) and VLT
XSHOOTER (visible/near-IR) spectroscopy obtained within 20 hours of the
X-ray observations. TWA 30A was detected in both XMM-Newton observations at
relatively faint intrinsic X-ray luminosities (
) compared to stars of similar mass and age . The intrinsic
(0.15-2.0 keV) X-ray luminosities measured in 2011 had decreased by a factor
20-100 relative to a 1990 (ROSAT) X-ray detection. TWA 30B was not detected,
and we infer an upper limit of ( 3.0 erg
s). We measured a large change in visual extinction toward TWA 30A (from
to ) between the two 2011 observing epochs,
and we find evidence for a corresponding significant decrease in X-ray
absorbing column (). The apparent correlated change in and is
suggestive of variable obscuration of the stellar photosphere by disk material
composed of both gas and dust. However, in both observations, the inferred
to ratio is lower than that typical of the ISM, suggesting that
the disk is either depleted of gas or is deficient in metals in the gas phase.Comment: 10 pages, 7 figures, Accepted for publication in MNRA
An Unbiased 1.3 mm Emission Line Survey of the Protoplanetary Disk Orbiting LkCa 15
The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ~2-5
Myr-old, actively accreting solar analog LkCa 15 are known to be chemically
rich, and the inner disk may host a young protoplanet within its central
cavity. To obtain a complete census of the brightest molecular line emission
emanating from the LkCa 15 disk over the 210-270 GHz (1.4 - 1.1 mm) range, we
have conducted an unbiased radio spectroscopic survey with the Institute de
Radioastronomie Millimetrique (IRAM) 30 meter telescope. The survey
demonstrates that, in this spectral region, the most readily detectable lines
are those of CO and its isotopologues 13CO and C18O, as well as HCO+, HCN, CN,
C2H, CS, and H2CO. All of these species had been previously detected in the
LkCa 15 disk; however, the present survey includes the first complete coverage
of the CN (2-1) and C2H (3-2) hyperfine complexes. Modeling of these emission
complexes indicates that the CN and C2H either reside in the coldest regions of
the disk or are subthermally excited, and that their abundances are enhanced
relative to molecular clouds and young stellar object environments. These
results highlight the value of unbiased single-dish line surveys in guiding
future high resolution interferometric imaging of disks.Comment: 35 pages, 9 figures, accepted for publication in The Astrophysical
Journa
Molecules in the transition disk orbiting T Cha
We seek to establish the presence and properties of gas in the circumstellar
disk orbiting T Cha, a nearby (d~110 pc), relatively evolved (age ~5-7 Myr) yet
actively accreting 1.5 Msun T Tauri star. We used the APEX 12 m radiotelescope
to search for submillimeter molecular emission from the T Cha disk, and we
reanalyzed archival XMM-Newton spectroscopy of T Cha to ascertain the
intervening absorption due to disk gas along the line of sight to the star
(N_H). We detected submillimeter rotational transitions of 12CO, 13CO, HCN, CN
and HCO+ from the T Cha disk. The 12CO line appears to display a double-peaked
line profile indicative of Keplerian rotation. Analysis of the CO emission line
data indicates that the disk around T Cha has a mass (M_disk,H_2 = 80 M_earth)
similar to, but more compact (R_disk, CO~80 AU) than, other nearby, evolved
molecular disks (e.g. V4046 Sgr, TW Hya, MP Mus) in which cold molecular gas
has been previously detected. The HCO+/13CO and HCN/13CO, line ratios measured
for T Cha appear similar to those of other evolved circumstellar disks (i.e. TW
Hya and V4046 Sgr), while the CN/13CO ratio appears somewhat weaker. Analysis
of the XMM-Newton data shows that the atomic absorption toward T Cha is
1-2 orders of magnitude larger than toward the other nearby T Tauri with
evolved disks. Furthermore, the ratio between atomic absorption and optical
extinction N_H/A_V toward T Cha is higher than the typical value observed for
the interstellar medium and young stellar objects in the Orion Nebula Cluster.
This may suggest that the fraction of metals in the disk gas is higher than in
the interstellar medium. Our results confirm that pre-main sequence stars older
than ~5 Myr, when accreting, retain cold molecular disks, and that those
relatively evolved disks display similar physical and chemical properties.Comment: Accepted for publication on A&
- …