22 research outputs found

    Integrated Shipment Dispatching and Packing Problems: a Case Study

    No full text
    In this paper we examine a consolidation and dispatching problem motivated by a multinational chemical company which has to decide routinely the best way of delivering a set of orders to its customers over a multi-day planning horizon. Every day the decision to be made includes order consolidation, vehicle dispatching as well as load packing into the vehicles. We develop a heuristic based on a cutting plane framework, in which a simplified Integer Linear Program (ILP) is solved to optimality. Since the ILP solution may correspond to a infeasible loading plan, a feasibility check is performed through a tailored heuristic for a threedimensional bin packing problem with side constraints. If this test fails, a cut able to remove the infeasible solution is generated and added to the simplified ILP. Then the procedure is iterated. Computational results show that our procedure allows achieving remarkable cost savings

    Museum of Fine Arts Bulletin

    No full text
    This article describes a study concerning micropump design for medical purposes. In particular the project is focused on treatment of Hydrocephalus. An actuator glued on a membrane, a pumping chamber and a certain number of valves constitute the micropumps. The actuator is a piezoelectric disc, controlled according to data collected by means of a pressure sensor. We have studied two different structures of micropump: the first with membrane valves, and the second with diffuser/nozzle valves, without moving parts. Modelling both micropumps with electrical equivalent networks, we are able to estimate the pump behaviour, in terms of flow rate, with a simulator such as SPICE, and to optimize the micropump design for best performances. © 2005 Taylor & Francis

    Online in vivo dosimetry in high dose rate prostate brchytherapy with MOSkin detectors: In phantom feasibility study

    Get PDF
    MOSkin detectors were studied to perform real-time in vivo dose measurements in high dose rate prostate brachytherapy. Measurements were performed inside an urethral catheter in a gel phantom simulating a real prostate implant. Measured and expected doses were compared and the discrepancy was found to be within 8.9% and 3.8% for single MOSkin and dual-MOSkin configurations, respectively. Results show that dual-MOSkin detectors can be profitably adopted in prostate brachytherapy treatments to perform real-time in vivo dosimetry inside the urethra

    Quality assurance of VMAT on flattened and flattening filter-free accelerators using a high spatial resolution detector

    Get PDF
    © 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine Purpose: This study investigated the use of high spatial resolution solid-state detectors (DUO and Octa) combined with an inclinometer for machine-based quality assurance (QA) of Volumetric Modulated Arc Therapy (VMAT) with flattened and flattening filter-free beams. Method: The proposed system was inserted in the accessory tray of the gantry head of a Varian 21iX Clinac and a Truebeam linear accelerator. Mutual dependence of the dose rate (DR) and gantry speed (GS) was assessed using the standard Varian customer acceptance plan (CAP). The multi-leaf collimator (MLC) leaf speed was evaluated under static gantry conditions in directions parallel and orthogonal to gravity as well as under dynamic gantry conditions. Measurements were compared to machine log files. Results: DR and GS as a function of gantry angle were reconstructed using the DUO/inclinometer and in agreement to within 1% with the machine log files in the sectors of constant DR and GS. The MLC leaf speeds agreed with the nominal speeds and those extracted from the machine log files to within 0.03 cm s−1. The effect of gravity on the leaf motion was only observed when the leaves traveled faster than the nominal maximum velocity stated by the vendor. Under dynamic gantry conditions, MLC leaf speeds ranging between 0.33 and 1.42 cm s−1 were evaluated. Comparing the average MLC leaf speeds with the machine log files found differences between 0.9% and 5.7%, with the largest discrepancy occurring under conditions of fastest leaf velocity, lowest DR and lowest detector signal. Conclusions: The investigation on the use of solid-state detectors in combination with an inclinometer has demonstrated the capability to provide efficient and independent verification of DR, GS, and MLC leaf speed during dynamic VMAT delivery. Good agreement with machine log files suggests the detector/inclinometer system is a useful tool for machine-specific VMAT QA

    Characterisation of silicon diode arrays for dosimetry in external beam radiation therapy

    Get PDF
    Modern stereotactic radiation therapy modalities utilize small beams and large dose gradients to deliver radiation in few fractions, reducing the possibility to correct for mistakes during the treatment process. Therefore, in order to ensure best possible treatment for the patient, quality assurance for such treatments necessitates a stable, linear, and sensitive radiation detector with high spatial resolution and radiation hardness. In this work, two silicon detector arrays with high spatial resolution have been characterized by 6 MV and 18 MV medical LINAC irradiation, and 5.5 MeV He2+ heavy ion microprobe. A maximum discrepancy of 0.6 mm in field size has been found when comparing to two-dimensional radiochromic film dose profile, and charge collection efficiency obtained by means of ion beam induced charge collection (IBICC) is 66% when operating the array in photovoltaic mode. Radiation damage study by photons and photoneutrons is presented
    corecore