4,658 research outputs found

    Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges

    Full text link
    For the orthogonal-unitary and symplectic-unitary transitions in random matrix theory, the general parameter dependent distribution between two sets of eigenvalues with two different parameter values can be expressed as a quaternion determinant. For the parameter dependent Gaussian and Laguerre ensembles the matrix elements of the determinant are expressed in terms of corresponding skew-orthogonal polynomials, and their limiting value for infinite matrix dimension are computed in the vicinity of the soft and hard edges respectively. A connection formula relating the distributions at the hard and soft edge is obtained, and a universal asymptotic behaviour of the two point correlation is identified.Comment: 37 pgs., 1fi

    Tridiagonal realization of the anti-symmetric Gaussian β\beta-ensemble

    Full text link
    The Householder reduction of a member of the anti-symmetric Gaussian unitary ensemble gives an anti-symmetric tridiagonal matrix with all independent elements. The random variables permit the introduction of a positive parameter β\beta, and the eigenvalue probability density function of the corresponding random matrices can be computed explicitly, as can the distribution of {qi}\{q_i\}, the first components of the eigenvectors. Three proofs are given. One involves an inductive construction based on bordering of a family of random matrices which are shown to have the same distributions as the anti-symmetric tridiagonal matrices. This proof uses the Dixon-Anderson integral from Selberg integral theory. A second proof involves the explicit computation of the Jacobian for the change of variables between real anti-symmetric tridiagonal matrices, its eigenvalues and {qi}\{q_i\}. The third proof maps matrices from the anti-symmetric Gaussian β\beta-ensemble to those realizing particular examples of the Laguerre β\beta-ensemble. In addition to these proofs, we note some simple properties of the shooting eigenvector and associated Pr\"ufer phases of the random matrices.Comment: 22 pages; replaced with a new version containing orthogonal transformation proof for both cases (Method III

    The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source

    Full text link
    In classical random matrix theory the Gaussian and chiral Gaussian random matrix models with a source are realized as shifted mean Gaussian, and chiral Gaussian, random matrices with real (β=1)(\beta = 1), complex (β=2)\beta = 2) and real quaternion (β=4(\beta = 4) elements. We use the Dyson Brownian motion model to give a meaning for general β>0\beta > 0. In the Gaussian case a further construction valid for β>0\beta > 0 is given, as the eigenvalue PDF of a recursively defined random matrix ensemble. In the case of real or complex elements, a combinatorial argument is used to compute the averaged characteristic polynomial. The resulting functional forms are shown to be a special cases of duality formulas due to Desrosiers. New derivations of the general case of Desrosiers' dualities are given. A soft edge scaling limit of the averaged characteristic polynomial is identified, and an explicit evaluation in terms of so-called incomplete Airy functions is obtained.Comment: 21 page

    Hypergeometric solutions to the q-Painlev\'e equation of type A4(1)A_4^{(1)}

    Full text link
    We consider the q-Painlev\'e equation of type A4(1)A_4^{(1)} (a version of q-Painlev\'e V equation) and construct a family of solutions expressible in terms of certain basic hypergeometric series. We also present the determinant formula for the solutions.Comment: 16 pages, IOP styl

    Growth models, random matrices and Painleve transcendents

    Full text link
    The Hammersley process relates to the statistical properties of the maximum length of all up/right paths connecting random points of a given density in the unit square from (0,0) to (1,1). This process can also be interpreted in terms of the height of the polynuclear growth model, or the length of the longest increasing subsequence in a random permutation. The cumulative distribution of the longest path length can be written in terms of an average over the unitary group. Versions of the Hammersley process in which the points are constrained to have certain symmetries of the square allow similar formulas. The derivation of these formulas is reviewed. Generalizing the original model to have point sources along two boundaries of the square, and appropriately scaling the parameters gives a model in the KPZ universality class. Following works of Baik and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled cumulative distribution, in which a particular Painlev\'e II transcendent plays a prominent role.Comment: 27 pages, 5 figure

    The Ideal Conductor Limit

    Full text link
    This paper compares two methods of statistical mechanics used to study a classical Coulomb system S near an ideal conductor C. The first method consists in neglecting the thermal fluctuations in the conductor C and constrains the electric potential to be constant on it. In the second method the conductor C is considered as a conducting Coulomb system the charge correlation length of which goes to zero. It has been noticed in the past, in particular cases, that the two methods yield the same results for the particle densities and correlations in S. It is shown that this is true in general for the quantities which depend only on the degrees of freedom of S, but that some other quantities, especially the electric potential correlations and the stress tensor, are different in the two approaches. In spite of this the two methods give the same electric forces exerted on S.Comment: 19 pages, plain TeX. Submited to J. Phys. A: Math. Ge

    Women and Menopause : a better outlook for the 1990s

    Get PDF

    Symmetrized models of last passage percolation and non-intersecting lattice paths

    Get PDF
    It has been shown that the last passage time in certain symmetrized models of directed percolation can be written in terms of averages over random matrices from the classical groups U(l)U(l), Sp(2l)Sp(2l) and O(l)O(l). We present a theory of such results based on non-intersecting lattice paths, and integration techniques familiar from the theory of random matrices. Detailed derivations of probabilities relating to two further symmetrizations are also given.Comment: 21 pages, 5 figure
    • …
    corecore