2,223 research outputs found

    On the approach to equilibrium of an Hamiltonian chain of anharmonic oscillators

    Full text link
    In this note we study the approach to equilibrium of a chain of anharmonic oscillators. We find indications that a sufficiently large system always relaxes to the usual equilibrium distribution. There is no sign of an ergodicity threshold. The time however to arrive to equilibrium diverges when g→0g \to 0, gg being the anharmonicity.Comment: 8 pages, 5 figure

    A pseudo-potential analog for zero-range photoassociation and Feshbach resonance

    Full text link
    A zero-range approach to atom-molecule coupling is developed in analogy to the Fermi-Huang pseudo-potential treatment of atom-atom interactions. It is shown by explicit comparison to an exactly-solvable finite-range model that replacing the molecular bound-state wavefunction with a regularized delta-function can reproduce the exact scattering amplitude in the long-wavelength limit. Using this approach we find an analytical solution to the two-channel Feshbach resonance problem for two atoms in a spherical harmonic trap

    The Consistency of Fermi-LAT Observations of the Galactic Center with a Millisecond Pulsar Population in the Central Stellar Cluster

    Full text link
    I show that the spectrum and morphology of a recent Fermi-LAT observation of the Galaxy center are consistent with a millisecond pulsar population in the nuclear Central stellar cluster of the Milky Way. The Galaxy Center gamma-ray spectrum is consistent with the spectrum of four of eight globular clusters that have been detected in the gamma-ray. A dark matter annihilation interpretation cannot be ruled out, though no unique features exist that would require this conclusion.Comment: 5 pages, 1 figure; v3: matches version to appear in JCA

    Atomic Effective Pseudopotentials for Semiconductors

    Full text link
    We derive an analytic connection between the screened self-consistent effective potential from density functional theory (DFT) and atomic effective pseudopotentials (AEPs). The motivation to derive AEPs is to address structures with thousands to hundred thousand atoms, as given in most nanostructures. The use of AEPs allows to bypass a self-consistent procedure and to address eigenstates around a certain region of the spectrum (e.g., around the band gap). The bulk AEP construction requires two simple DFT calculations of slightly deformed elongated cells. The ensuing AEPs are given on a fine reciprocal space grid, including the small reciprocal vector components, are free of parameters, and involve no fitting procedure. We further show how to connect the AEPs of different bulk materials, which is necessary to obtain accurate band offsets. We derive a total of 20 AEPs for III-V, II-VI and group IV semiconductors and demonstrate their accuracy and transferability by comparison to DFT calculations of strained bulk structures, quantum wells with varying thickness, and semiconductor alloys.Comment: 10 pages, 5 figures, submitted to PR

    Classical evolution of fractal measures generated by a scalar field on the lattice

    Full text link
    We investigate the classical evolution of a Ï•4\phi^4 scalar field theory, using in the initial state random field configurations possessing a fractal measure expressed by a non-integer mass dimension. These configurations resemble the equilibrium state of a critical scalar condensate. The measures of the initial fractal behavior vary in time following the mean field motion. We show that the remnants of the original fractal geometry survive and leave an imprint in the system time averaged observables, even for large times compared to the approximate oscillation period of the mean field, determined by the model parameters. This behavior becomes more transparent in the evolution of a deterministic Cantor-like scalar field configuration. We extend our study to the case of two interacting scalar fields, and we find qualitatively similar results. Therefore, our analysis indicates that the geometrical properties of a critical system initially at equilibrium could sustain for several periods of the field oscillations in the phase of non-equilibrium evolution.Comment: 13 pages, 13 figures, version published at Int. J. Mod. Phys.

    Causality, delocalization and positivity of energy

    Full text link
    In a series of interesting papers G. C. Hegerfeldt has shown that quantum systems with positive energy initially localized in a finite region, immediately develop infinite tails. In our paper Hegerfeldt's theorem is analysed using quantum and classical wave packets. We show that Hegerfeldt's conclusion remains valid in classical physics. No violation of Einstein's causality is ever involved. Using only positive frequencies, complex wave packets are constructed which at t=0t = 0 are real and finitely localized and which, furthemore, are superpositions of two nonlocal wave packets. The nonlocality is initially cancelled by destructive interference. However this cancellation becomes incomplete at arbitrary times immediately afterwards. In agreement with relativity the two nonlocal wave packets move with the velocity of light, in opposite directions.Comment: 14 pages, 5 figure

    The e+ e- -> P1 P2 gamma processes close to the Phi peak: toward a model-independent analysis

    Full text link
    We discuss the general decomposition and possible general parameterizations of the processes e+e−→γ∗→P1P2γe^+ e^- \to \gamma^* \to P_1 P_2 \gamma, where P1P2=π0π0P_1 P_2=\pi^0 \pi^0, π0η\pi^0\eta, or π+π−\pi^+\pi^-, for s≈MΦ\sqrt{s}\approx M_\Phi. Particular attention is devoted to the amplitude where the two pseudoscalar mesons are in a JCP=0++J^{CP}= 0^{++} state, where we propose a general parameterization which should help to shed light on the nature of light scalar mesons.Comment: 12 pages, Late

    Ionization potentials in the limit of large atomic number

    Full text link
    By extrapolating the energies of non-relativistic atoms and their ions with up to 3000 electrons within Kohn-Sham density functional theory, we find that the ionization potential remains finite and increases across a row, even as Z→∞Z\rightarrow\infty. The local density approximation becomes chemically accurate (and possibly exact) in some cases. Extended Thomas-Fermi theory matches the shell-average of both the ionization potential and density change. Exact results are given in the limit of weak electron-electron repulsion.Comment: 4 pages, 5 figure

    Dark Matter detection via lepton cosmic rays

    Get PDF
    Recent observations of lepton cosmic rays, coming from the PAMELA and FERMI experiments, have pushed our understanding of the interstellar medium and cosmic rays sources to unprecedented levels. The imprint of dark matter on lepton cosmic rays is the most exciting explanation of both PAMELA's positron excess and FERMI's total flux of electrons. Alternatively, supernovae are astrophysical objects with the same potential to explain these observations. In this work, we present an updated study of the astrophysical sources of lepton cosmic rays and the possible trace of a dark matter signal on the positron excess and total flux of electrons.Comment: 6 pages and 3 figures. Proceedings for PASCOS 2010, Valencia, Spai
    • …
    corecore