11 research outputs found
Anomalous quantum chaotic behavior in nanoelectromechanical structures
It is predicted that for sufficiently strong electron-phonon coupling an
anomalous quantum chaotic behavior develops in certain types of suspended
electro-mechanical nanostructures, here comprised by a thin cylindrical quantum
dot (billiard) on a suspended rectangular dielectric plate. The deformation
potential and piezoelectric interactions are considered. As a result of the
electron-phonon coupling between the two systems the spectral statistics of the
electro-mechanic eigenenergies exhibit an anomalous behavior. If the center of
the quantum dot is located at one of the symmetry axes of the rectangular
plate, the energy level distributions correspond to the Gaussian Orthogonal
Ensemble (GOE), otherwise they belong to the Gaussian Unitary Ensemble (GUE),
even though the system is time-reversal invariant.Comment: 4 pages, pdf forma
Quantum chaos in nanoelectromechanical systems
We present a theoretical study of the electron-phonon coupling in suspended
nanoelectromechanical systems (NEMS) and investigate the resulting quantum
chaotic behavior. The phonons are associated with the vibrational modes of a
suspended rectangular dielectric plate, with free or clamped boundary
conditions, whereas the electrons are confined to a large quantum dot (QD) on
the plate's surface. The deformation potential and piezoelectric interactions
are considered. By performing standard energy-level statistics we demonstrate
that the spectral fluctuations exhibit the same distributions as those of the
Gaussian Orthogonal Ensemble (GOE) or the Gaussian Unitary Ensemble (GUE),
therefore evidencing the emergence of quantum chaos. That is verified for a
large range of material and geometry parameters. In particular, the GUE
statistics occurs only in the case of a circular QD. It represents an anomalous
phenomenon, previously reported for just a small number of systems, since the
problem is time-reversal invariant. The obtained results are explained through
a detailed analysis of the Hamiltonian matrix structure.Comment: 14 pages, two column
Photochemistry of Transition Metal Complexes Induced by Outer-Sphere Charge Transfer Excitation
The intermolecular (outer sphere, OS) interaction of a reducing and an oxidizing metal complex generates a new optical transition involving charge transfer (CT) from the electron donor to the acceptor. OS CT transitions are classified according to the redox site (metal or ligand). Generally, the interaction between donor and acceptor is facilitated by ion pairs consisting of an oxidizing complex cation and a reducing complex anion. There are also ion pairs which are composed of a metal complex and an organic counter ion as electron donor or acceptor. In addition, the review includes examples of OS CT interaction which do not involve ion pairs at all. — A short introduction into the theory is followed by the discussion of the spectroscopy of OS CT of transition metal complexes. Finally, photoreactions induced by OS CT transitions are reviewed. The optical transfer is frequently followed by a rapid back electron transfer which regenerates the starting complexes. In many cases the primary products are kinetically labile and substitution reactions compete successfully with back electron transfer. As a result stable redox products may be formed. As an alternative, the substitution can be followed by back electron transfer. Product formation appears then as a substitution of the starting complexes. The various possibilities are illustrated by appropriate examples
Management of Pediatric Trauma.
Injury is still the number 1 killer of children ages 1 to 18 years in the United States (http://www.cdc.gov/nchs/fastats/children.htm). Children who sustain injuries with resulting disabilities incur significant costs not only for their health care but also for productivity lost to the economy. The families of children who survive childhood injury with disability face years of emotional and financial hardship, along with a significant societal burden. The entire process of managing childhood injury is enormously complex and varies by region. Only the comprehensive cooperation of a broadly diverse trauma team will have a significant effect on improving the care of injured children