3,140 research outputs found

    Lattice and q-difference Darboux-Zakharov-Manakov systems via ˉ\bar{\partial}-dressing method

    Full text link
    A general scheme is proposed for introduction of lattice and q-difference variables to integrable hierarchies in frame of ˉ\bar{\partial}-dressing method . Using this scheme, lattice and q-difference Darboux-Zakharov-Manakov systems of equations are derived. Darboux, B\"acklund and Combescure transformations and exact solutions for these systems are studied.Comment: 8 pages, LaTeX, to be published in J Phys A, Letters

    New Perturbation Theory for Nonstationary Anharmonic Oscillator

    Full text link
    The new perturbation theory for the problem of nonstationary anharmonic oscillator with polynomial nonstationary perturbation is proposed. As a zero order approximation the exact wave function of harmonic oscillator with variable frequency in external field is used. Based on some intrinsic properties of unperturbed wave function the variational-iterational method is proposed, that make it possible to correct both the amplitude and the phase of wave function. As an application the first order correction are proposed both for wave function and S-matrix elements for asymmetric perturbation potential of type V(x,τ)=α(τ)x3+β(τ)x4.V(x,\tau)=\alpha (\tau)x^3+\beta (\tau)x^4. The transition amplitude ''ground state - ground state'' W00(λ;ρ)W_{00}(\lambda ;\rho) is analyzed in detail depending on perturbation parameter λ\lambda (including strong coupling region % \lambda 1\sim 1) and one-dimensional refraction coefficient ρ\rho .Comment: LaTeX, 13 page

    Intermediate phase in the spiral antiferromagnet Ba_2CuGe_2O_7

    Full text link
    The magnetic compound Ba_2CuGe_2O_7 has recently been shown to be an essentially two-dimensional spiral antiferromagnet that exhibits an incommensurate-to-commensurate phase transition when a magnetic field applied along the c-axis exceeds a certain critical value H_c. The T=0 dynamics is described here in terms of a continuum field theory in the form of a nonlinear sigma model. We are thus in a position to carry out a complete calculation of the low-energy magnon spectrum for any strength of the applied field throughout the phase transition. In particular, our spin-wave analysis reveals field-induced instabilities at two distinct critical fields H_1 and H_2 such that H_1 < H_c < H_2. Hence we predict the existence of an intermediate phase whose detailed nature is also studied to some extent in the present paper.Comment: 15 pages, 11 figures, 2 table

    Functional representations of integrable hierarchies

    Full text link
    We consider a general framework for integrable hierarchies in Lax form and derive certain universal equations from which `functional representations' of particular hierarchies (like KP, discrete KP, mKP, AKNS), i.e. formulations in terms of functional equations, are systematically and quite easily obtained. The formalism genuinely applies to hierarchies where the dependent variables live in a noncommutative (typically matrix) algebra. The obtained functional representations can be understood as `noncommutative' analogs of `Fay identities' for the KP hierarchy.Comment: 21 pages, version 2: equations (3.28) and (4.11) adde

    Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers

    Full text link
    In antiferromagnetically coupled superlattices grown on (001) faces of cubic substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or Fe/Cr, the magnetic states evolve under competing influence of bilinear and biquadratic exchange interactions, surface-enhanced four-fold in-plane anisotropy, and specific finite-size effects. Using phenomenological (micromagnetic) theory, a comprehensive survey of the magnetic states and reorientation transitions has been carried out for multilayer systems with even number of ferromagnetic sub-layers and magnetizations in the plane. In two-layer systems (N=2) the phase diagrams in dependence on components of the applied field in the plane include ``swallow-tail'' type regions of (metastable) multistate co-existence and a number of continuous and discontinuous reorientation transitions induced by radial and transversal components of the applied field. In multilayers (N \ge 4) noncollinear states are spatially inhomogeneous with magnetization varying across the multilayer stack. For weak four-fold anisotropy the magnetic states under influence of an applied field evolve by a complex continuous reorientation into the saturated state. At higher anisotropy they transform into various inhomogeneous and asymmetric structures. The discontinuous transitions between the magnetic states in these two-layers and multilayers are characterized by broad ranges of multi-phase coexistence of the (metastable) states and give rise to specific transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio

    Limb-Darkening of a K Giant in the Galactic Bulge: PLANET Photometry of MACHO 97-BLG-28

    Get PDF
    We present the PLANET photometric dataset for the binary-lens microlensing event MACHO 97-BLG-28 consisting of 696 I and V-band measurements, and analyze it to determine the radial surface brightness profile of the Galactic bulge source star. The microlensed source, demonstrated to be a K giant by our independent spectroscopy, crossed the central isolated cusp of the lensing binary, generating a sharp peak in the light curve that was well-resolved by dense (3 - 30 minute) and continuous monitoring from PLANET sites in Chile, South Africa, and Australia. Our modeling of these data has produced stellar profiles for the source star in the I and V bands that are in excellent agreement with those predicted by stellar atmospheric models for K giants. The limb-darkening coefficients presented here are the first derived from microlensing, among the first for normal giants by any technique, and the first for any star as distant as the Galactic bulge. Modeling indicates that the lensing binary has a mass ratio q = 0.23 and an (instantaneous) separation in units of the angular Einstein ring radius of d = 0.69 . For a lens in the Galactic bulge, this corresponds to a typical stellar binary with a projected separation between 1 and 2 AU. If the lens lies closer, the separation is smaller, and one or both of the lens objects is in the brown dwarf regime. Assuming that the source is a bulge K2 giant at 8 kpc, the relative lens-source proper motion is mu = 19.4 +/- 2.6 km/s /kpc, consistent with a disk or bulge lens. If the non-lensed blended light is due to a single star, it is likely to be a young white dwarf in the bulge, consistent with the blended light coming from the lens itself.Comment: 32 Pages, including 1 table and 9 postscript figures. (Revised version has slightly modified text, corrected typo, and 1 new figure.) Accepted for publication in 1999 Astrophysical Journal; data are now available at http://www.astro.rug.nl/~plane

    Polarization ququarts

    Full text link
    We discuss the concept of polarization states of four-dimensional quantum systems based on frequency non-degenerate biphoton field. Several quantum tomography protocols were developed and implemented for measurement of an arbitrary state of ququart. A simple method that does not rely on interferometric technique is used to generate and measure the sequence of states that can be used for quantum communication purposes.Comment: 13 pages, 10 figure

    Spin and orbital dynamics through the metal-to-insulator transition in Cd2_2Os2_2O7_7 probed with high-resolution RIXS

    Get PDF
    High-resolution resonant inelastic x-ray scattering (RIXS) measurements (Δ\DeltaE = 46 meV) have been performed on Cd2_2Os2_2O7_7 through the metal-to-insulator transition (MIT). A magnetic excitation at 125 meV evolves continuously through the MIT, in agreement with recent Raman scattering results, and provides further confirmation for an all-in, all-out magnetic ground state. Asymmetry of this feature is likely a result of coupling between the electronic and magnetic degrees of freedom. We also observe a broad continuum of interband excitations centered at 0.3 eV energy loss. This is indicative of significant hybridization between Os 5dd and O 2pp states, and concurrent itinerant nature of the system. In turn, this suggests a possible break down of the free-ion model for Cd2_2Os2_2O7_7.Comment: Accepted in Physical Review B (10 pages

    Strongly Gapped Spin-Wave Excitation in the Insulating Phase of NaOsO3

    Get PDF
    NaOsO3 hosts a rare manifestation of a metal-insulator transition driven by magnetic correlations, placing the magnetic exchange interactions in a central role. We use resonant inelastic x-ray scattering to directly probe these magnetic exchange interactions. A dispersive and strongly gapped (58 meV) excitation is observed indicating appreciable spin-orbit coupling in this 5d3 system. The excitation is well described within a minimal model Hamiltonian with strong anisotropy and Heisenberg exchange (J1=J2=13.9 meV). The observed behavior places NaOsO3 on the boundary between localized and itinerant magnetism
    corecore