154 research outputs found

    Quantum Walks of SU(2)_k Anyons on a Ladder

    Full text link
    We study the effects of braiding interactions on single anyon dynamics using a quantum walk model on a quasi-1-dimensional ladder filled with stationary anyons. The model includes loss of information of the coin and nonlocal fusion degrees of freedom on every second time step, such that the entanglement between the position states and the exponentially growing auxiliary degrees of freedom is lost. The computational complexity of numerical calculations reduces drastically from the fully coherent anyonic quantum walk model, allowing for relatively long simulations for anyons which are spin-1/2 irreps of SU(2)_k Chern-Simons theory. We find that for Abelian anyons, the walk retains the ballistic spreading velocity just like particles with trivial braiding statistics. For non-Abelian anyons, the numerical results indicate that the spreading velocity is linearly dependent on the number of time steps. By approximating the Kraus generators of the time evolution map by circulant matrices, it is shown that the spatial probability distribution for the k=2 walk, corresponding to Ising model anyons, is equal to the classical unbiased random walk distribution.Comment: 12 pages, 4 figure

    Non-positivity of the Wigner function and bounds on associated integrals

    Full text link
    The Wigner function shares several properties with classical distribution functions on phase space, but is not positive-definite. The integral of the Wigner function over a given region of phase space can therefore lie outside the interval [0,1]. The problem of finding best-possible upper and lower bounds for a given region is the problem of finding the greatest and least eigenvalues of an associated Hermitian operator. Exactly solvable examples are described, and possible extensions are indicated.Comment: 5 pages, Latex2e fil

    Prime decomposition and correlation measure of finite quantum systems

    Get PDF
    Under the name prime decomposition (pd), a unique decomposition of an arbitrary NN-dimensional density matrix ρ\rho into a sum of seperable density matrices with dimensions given by the coprime factors of NN is introduced. For a class of density matrices a complete tensor product factorization is achieved. The construction is based on the Chinese Remainder Theorem and the projective unitary representation of ZNZ_N by the discrete Heisenberg group HNH_N. The pd isomorphism is unitarily implemented and it is shown to be coassociative and to act on HNH_N as comultiplication. Density matrices with complete pd are interpreted as grouplike elements of HNH_N. To quantify the distance of ρ\rho from its pd a trace-norm correlation index E\cal E is introduced and its invariance groups are determined.Comment: 9 pages LaTeX. Revised version: changes in the terminology, updates in ref

    Quantization of Soliton Cellular Automata

    Get PDF
    A method of quantization of classical soliton cellular automata (QSCA) is put forward that provides a description of their time evolution operator by means of quantum circuits that involve quantum gates from which the associated Hamiltonian describing a quantum chain model is constructed. The intrinsic parallelism of QSCA, a phenomenon first known from quantum computers, is also emphasized.Comment: Latex, 6 pages, 1 figure in eps format included. Submitted to Journal of Nonlinear Mathematical Physics. Special Issue of Proccedings of NEEDS'9

    Complex analytic realizations for quantum algebras

    Full text link
    A method for obtaining complex analytic realizations for a class of deformed algebras based on their respective deformation mappings and their ordinary coherent states is introduced. Explicit results of such realizations are provided for the cases of the qq-oscillators (qq-Weyl-Heisenberg algebra) and for the suq(2)su_{q}(2) and suq(1,1)su_{q}(1,1) algebras and their co-products. They are given in terms of a series in powers of ordinary derivative operators which act on the Bargmann-Hilbert space of functions endowed with the usual integration measure. In the q→1q\rightarrow 1 limit these realizations reduce to the usual analytic Bargmann realizations for the three algebras.Comment: 18 page

    Free Dirac evolution as a quantum random walk

    Full text link
    Any positive-energy state of a free Dirac particle that is initially highly-localized, evolves in time by spreading at speeds close to the speed of light. This general phenomenon is explained by the fact that the Dirac evolution can be approximated arbitrarily closely by a quantum random walk, where the roles of coin and walker systems are naturally attributed to the spin and position degrees of freedom of the particle. Initially entangled and spatially localized spin-position states evolve with asymptotic two-horned distributions of the position probability, familiar from earlier studies of quantum walks. For the Dirac particle, the two horns travel apart at close to the speed of light.Comment: 16 pages, 1 figure. Latex2e fil

    Simulation of static and random errors on Grover's search algorithm implemented in a Ising nuclear spin chain quantum computer with few qubits

    Full text link
    We consider Grover's search algorithm on a model quantum computer implemented on a chain of four or five nuclear spins with first and second neighbour Ising interactions. Noise is introduced into the system in terms of random fluctuations of the external fields. By averaging over many repetitions of the algorithm, the output state becomes effectively a mixed state. We study its overlap with the nominal output state of the algorithm, which is called fidelity. We find either an exponential or a Gaussian decay for the fidelity as a function of the strength of the noise, depending on the type of noise (static or random) and whether error supression is applied (the 2pi k-method) or not.Comment: 18 pages, 8 figures, extensive revision with new figure

    Geometric phase in open systems

    Get PDF
    We calculate the geometric phase associated to the evolution of a system subjected to decoherence through a quantum-jump approach. The method is general and can be applied to many different physical systems. As examples, two main source of decoherence are considered: dephasing and spontaneous decay. We show that the geometric phase is completely insensitive to the former, i.e. it is independent of the number of jumps determined by the dephasing operator.Comment: 4 pages, 2 figures, RevTe

    Decoherence of geometric phase gates

    Get PDF
    We consider the effects of certain forms of decoherence applied to both adiabatic and non-adiabatic geometric phase quantum gates. For a single qubit we illustrate path-dependent sensitivity to anisotropic noise and for two qubits we quantify the loss of entanglement as a function of decoherence.Comment: 4 pages, 3 figure

    Phase-space-region operators and the Wigner function: Geometric constructions and tomography

    Get PDF
    Quasiprobability measures on a canonical phase space give rise through the action of Weyl's quantization map to operator-valued measures and, in particular, to region operators. Spectral properties, transformations, and general construction methods of such operators are investigated. Geometric trace-increasing maps of density operators are introduced for the construction of region operators associated with one-dimensional domains, as well as with two-dimensional shapes (segments, canonical polygons, lattices, etc.). Operational methods are developed that implement such maps in terms of unitary operations by introducing extensions of the original quantum system with ancillary spaces (qubits). Tomographic methods of reconstruction of the Wigner function based on the radon transform technique are derived by the construction methods for region operators. A Hamiltonian realization of the region operator associated with the radon transform is provided, together with physical interpretations
    • 

    corecore