779 research outputs found

    Shock Wave Measurements in Cloud Cavitation

    Get PDF
    One of the most destructive (and noisy) forms of cavitation is that referred to as "cloud cavitation" because it involves a large collection of bubbles which behave as a coherent whole. The present paper presents the results of an experimental study of the processes of collapse of a cavitation bubble cloud, specifically that generated by an oscillating hydrofoil in a water tunnel. Measurements of the far-field noise show that this is comprised of substantial pulses radiated from the cloud at the moment of collapse. Also, transducers within the cavitation zone encounter very large pressure pulses (or shock waves) with amplitudes of the order of tens of atmospheres and typical durations of the order of tenths of a millisecond. These shock waves appear to be responsible for the enhanced noise and damage potential which results from that phenomenon

    Pressure Pulses Generated by Cloud Cavitation

    Get PDF
    This paper describes an experimental investigation of the large unsteady and impulsive pressures which are experienced on the suction surface of both an oscillating and static hydrofoil as a result of cloud cavitation. The present experiments used piezo-electric transducers to measure unsteady pressures at four locations along the chord of the foil and at two locations along the walls of the tunnel test section. These transducers measured very large positive pressure pulses with amplitudes of the order of tens of atmospheres and with durations of the order of tenths of milliseconds. Two distinct types of pressure pulse were identified. "Local" pulses occurred at a single transducer location and were randomly distributed in position and time; several local impulses could be recorded by each transducer during an oscillation cycle. On the other hand, "global" impulses were registered by all the transducers almost simultaneously. Correlation of the transducer output with high speed movies of the cavitation revealed that they were produced by a large scale collapse of the bubble cloud. The location of the global impulses relative to the foil oscillation was quite repeatable and produced substantial far-field noise. The high speed movies also showed that the local impulses were caused both by crescent-shaped regions of low void fraction and by small bubbly structures. These regions appeared to be bounded by bubbly shock waves which were associated with the large pressure pulses. The paper also quantifies the effect of reduced frequency, cavitation number and tunnel velocity on the strength of the pressure pulses by presenting the acoustic impulse for a range of flow conditions. The reduced frequency is an important parameter in the determination of the total impulse level and the local and global pulse distribution. Large impulses are present on the foil surface even at cavitation numbers which do not result in large levels of acoustic radiation or global impulse. The total impulse increases with increasing tunnel velocity

    Cloud cavitation on an oscillating hydrofoil

    Get PDF
    Cloud cavitation, often formed by the breakdown of a sheet or vortex cavity, is believed to be responsible for much of the noise and erosion damage that occurs under cavitating conditions. For this paper, cloud cavitation was produced through the periodic forcing of the flow by an oscillating hydrofoil. The present work examines the acoustic signal generated by the collapse of cloud cavitation, and compares the results to those obtained by studies of single travelling bubble cavitation. In addition, preliminary studies involving the use of air injection on the suction surface of the hydrofoil explore its mitigating effects on the cavitation noise

    Observations of Shock Waves in Cloud Cavitation

    Get PDF
    This paper describes an investigation of the dynamics and acoustics of cloud cavitation, the structures which are often formed by the periodic breakup and collapse of a sheet or vortex cavity. This form of cavitation frequently causes severe noise and damage, though the precise mechanism responsible for the enhancement of these adverse effects is not fully understood. In this paper, we investigate the large impulsive surface pressures generated by this type of cavitation and correlate these with the images from high-speed motion pictures. This reveals that several types of propagating structures (shock waves) are formed in a collapsing cloud and dictate the dynamics and acoustics of collapse. One type of shock wave structure is associated with the coherent collapse of a well-defined and separate cloud when it is convected into a region of higher pressure. This type of global structure causes the largest impulsive pressures and radiated noise. But two other types of structure, termed 'crescent-shaped regions' and 'leading-edge structures' occur during the less-coherent collapse of clouds. These local events are smaller and therefore produce less radiated noise but the interior pressure pulse magnitudes are almost as large as those produced by the global events. The ubiquity and severity of these propagating shock wave structures provides a new perspective on the mechanisms reponsible for noise and damage in cavitating flows involving clouds of bubbles. It would appear that shock wave dynamics rather than the collapse dynamics of single bubbles determine the damage and noise in many cavitating flows

    Shock Waves in Cloud Cavitation

    Get PDF
    Thie paper described experimental and computational investigations of the dynamics of clouds of cavitation bubbles. Recent studies have confirmed that the interactions between bubbles as they are manifest in the dynamics of bubble clouds lead to generation of very large impulsive pressures which, in turn, cause substantial enhancement of the radiated noise and the material damage which results from this form of cavitation. The experimental program focuses on cloud cavitation formed on the suction surface of a hydrofoil, both static and oscillating. Piezo-electric transducers mounted at a series of locations on the suction surface measured very large positive pressure pulses with amplitudesx of the order of tens of atmospheres and with durations of the order of tenths of milliseconds. Two distinct types of pressure pulse were identified from high-speed films: "local pulses" which are registered by individual transducers and appear to be associated with the propagation of localized bubbly shocks and "global pulses" which result from larger scale, coherent collapses of bubble clouds. The experiments investigate the effects of reduced frequency, cavitation number and tunnel velocity on the magnitude of these pressure pulses. The computational component continues the earlier work of Wang and Brennen (1, 2), which presented numerical solutions of the growth and collapse of a spherical cloud of bubbles. This confirmed the idea put forward by Morch and his co-workers who speculated that collapse of the cloud involved the formation of a bubbly shock wave on the surface of the cloud and that inward propagation and geometric focussing of this shock would lead to very large localized pressure pulses. Here we review how the radiated acoustic pulses depend on the governing parameters such as the bubble population density, the cavitation number and the ratio of the bubble size to the cloud size. Understanding such bubbly flow and shock wave processes is important because these flow structures propagate the noise and produce the impulsive loads on nearby solid surfaces in a cavitating flow. How these shocks are formed and propagate in the much more complex cloud geometry associated with cavitating foils, propeller or pump blades is not presently clear. However, by combining the computational and experimental observations, we suggest some specific mechanisms which may be active in the dynamics and acoustics of these more complex flows

    Enantioselective Thiourea-Catalyzed Additions to Oxocarbenium Ions

    Get PDF
    Asymmetric, catalytic reactions of oxocarbenium ions are reported. Simple, chiral urea and thiourea derivatives are shown to catalyze the enantioselective substitution of silyl ketene acetals onto 1-chloroisochromans. A mechanism involving anion binding by the chiral catalyst to generate a reactive oxocarbenium ion is invoked. Catalysts bearing tertiary benzylic amide groups afforded highest enantioselectivities, with the optimal structure being derived from enantioenriched 2-arylpyrrolidine derivatives

    Observations of shock waves in cloud cavitation

    Full text link

    A copper-catalyzed asymmetric oxime propargylation enables the synthesis of the gliovirin tetrahydro-1,2-oxazine core

    Get PDF
    The bicyclic tetrahydro-1,2-oxazine subunit of gliovirin is synthesized through a diastereoselective copper-catalyzed cyclization of an N-hydroxyamino ester. Oxidative elaboration to the fully functionalized bicycle was achieved through a series of mild transformations. Central to this approach was the development of the first catalytic, enantioselective propargylation of an oxime to furnish a key N-hydroyxamino ester intermediate

    Locomotor adaptability in persons with unilateral transtibial amputation

    Get PDF
    Background Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb

    Soft systems methodology: a context within a 50-year retrospective of OR/MS

    Get PDF
    Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM
    corecore