710 research outputs found

    Animal models of heart failure with preserved ejection fraction

    Get PDF
    Heart failure with preserved ejection fraction (HFpEF) constitutes a clinical syndrome in which the diagnostic criteria of heart failure are not accompanied by gross disturbances of systolic function, as assessed by ejection fraction. In turn, under most circumstances, diastolic function is impaired. Although it now represents over 50% of all patients with heart failure, the mechanisms of HFpEF remain understood, precluding effective therapy. Understanding the pathophysiology of HFpEF has been restricted by both limited access to human myocardial biopsies and by the lack of animal models that fully mimic human pathology. Animal models are valuable research tools to clarify subcellular and molecular mechanisms under conditions where the comorbidities and other confounding factors can be precisely controlled. Although most of the heart failure animal models currently available represent heart failure with reduced ejection fraction, several HFpEF animal models have been proposed. However, few of these fulfil all the features present in human disease. In this review we will provide an overview of the currently available models to study HFpEF from rodents to large animals as well as present advantages and disadvantages of these models

    Learning interpretable continuous-time models of latent stochastic dynamical systems

    Get PDF
    We develop an approach to learn an interpretable semi-parametric model of a latent continuoustime stochastic dynamical system, assuming noisy high-dimensional outputs sampled at uneven times. The dynamics are described by a nonlinear stochastic differential equation (SDE) driven by a Wiener process, with a drift evolution function drawn from a Gaussian process (GP) conditioned on a set of learnt fixed points and corresponding local Jacobian matrices. This form yields a flexible nonparametric model of the dynamics, with a representation corresponding directly to the interpretable portraits routinely employed in the study of nonlinear dynamical systems. The learning algorithm combines inference of continuous latent paths underlying observed data with a sparse variational description of the dynamical process. We demonstrate our approach on simulated data from different nonlinear dynamical systems

    The use of remote monitoring of cardiac implantable devices during the COVID-19 pandemic: an EHRA physician survey

    Get PDF
    It is unclear to what extent the COVID-19 pandemic has influenced the use of remote monitoring (RM) of cardiac implantable electronic devices (CIEDs). The present physician-based European Heart Rhythm Association (EHRA) survey aimed to assess the influence of the COVID-19 pandemic on RM of CIEDs among EHRA members and how it changed the current practice. The survey comprised 27 questions focusing on RM use before and during the pandemic. Questions focused on the impact of COVID-19 on the frequency of in-office visits, data filtering, reasons for initiating in-person visits, underutilization of RM during COVID-19, and RM reimbursement. A total of 160 participants from 28 countries completed the survey. Compared to the pre-pandemic period, there was a significant increase in the use of RM in patients with pacemakers (PMs) and implantable loop recorders (ILRs) during the COVID-19 pandemic (PM 24.2 vs. 39.9%, P = 0.002; ILRs 61.5 vs. 73.5%, P = 0.028), while there was a trend towards higher utilization of RM for cardiac resynchronization therapy-pacemaker (CRT-P) devices during the pandemic (44.5 vs. 55%, P = 0.063). The use of RM with implantable cardioverter-defibrillators (ICDs) and CRT-defibrillator (CRT-D) did not significantly change during the pandemic (ICD 65.2 vs. 69.6%, P = 0.408; CRT-D 65.2 vs. 68.8%, P = 0.513). The frequency of in-office visits was significantly lower during the pandemic (P < 0.001). Nearly two-thirds of participants (57 out of 87 respondents), established new RM connections for CIEDs implanted before the pandemic with 33.3% (n = 29) delivering RM transmitters to the patient's home address, and the remaining 32.1% (n = 28) activating RM connections during an in-office visit. The results of this survey suggest that the crisis caused by COVID-19 has led to a significant increase in the use of RM of CIEDs

    Cardiorenal disease connection during post-menopause: The protective role of estrogen in uremic toxins induced microvascular dysfunction

    Get PDF
    Female gender, post-menopause, chronic kidney disease (CKD) and (CKD linked) microvascular disease are important risk factors for developing heart failure with preserved ejection fraction (HFpEF). Enhancing our understanding of the interrelation between these risk factors could greatly benefit the identification of new drug targets for future therapy. This review discusses the evidence for the protective role of estradiol (E2) in CKD-associated microvascular disease and related HFpEF. Elevated circulating levels of uremic toxins (UTs) during CKD may act in synergy with hormonal changes during post-menopause and could lead to coronary microvascular endothelial dysfunction in HFpEF. To elucidate the molecular mechanism involved, published transcriptome datasets of indoxyl sulfate (IS), high inorganic phosphate (HP) or E2 treated human derived endothelial cells from the NCBI Gene Expression Omnibus database were analyzed. In total, 36 genes overlapped in both IS- and HP-activated gene sets, 188 genes were increased by UTs (HP and/or IS) and decreased by E2, and 572 genes were decreased by UTs and increased by E2. Based on a comprehensive in silico analysis and literature studies of collected gene sets, we conclude that CKD-accumulated UTs could negatively impact renal and cardiac endothelial homeostasis by triggering extensive inflammatory responses and initiating dysregulation of angiogenesis. E2 may protect (myo)endothelium by inhibiting UTs-induced inflammation and ameliorating UTs-related uremic bleeding and thrombotic diathesis via restored coagulation capacity and hemostasis in injured vessels

    Exogenous angiotensin II does not facilitate norepinephrine release in the heart

    Get PDF
    Studies on the effect of angiotensin II on norepinephrine release from sympathetic nerve terminals through stimulation of presynaptic angiotensin II type 1 receptors are equivocal. Furthermore, evidence that angiotensin II activates the cardiac sympathetic nervous system in vivo is scarce or indirect. In the intact porcine heart, we investigated whether angiotensin II increases norepinephrine concentrations in the myocardial interstitial fluid (NE(MIF)) under basal conditions and during sympathetic activation and whether it enhances exocytotic and nonexocytotic ischemia-induced norepinephrine release. In 27 anesthetized pigs, NE(MIF) was measured in the left ventricular myocardium using the microdialysis technique. Local infusion of angiotensin II into the left anterior descending coronary artery (LAD) at consecutive rates of 0.05, 0.5, and 5 ng/kg per minute did not affect NE(MIF), LAD flow, left ventricular dP/dt(max), and arterial pressure despite large increments in coronary arterial and venous angiotensin II concentrations. In the presence of neuronal reuptake inhibition and alpha-adrenergic receptor blockade, left stellate ganglion stimulation increased NE(MIF) from 2.7+/-0.3 to 7.3+/-1.2 before, and from 2.3+/-0.4 to 6.9+/-1.3 nmol/L during, infusion of 0.5 ng/kg per minute angiotensin II. Sixty minutes of 70% LAD flow reduction caused a progressive increase in NE(MIF) from 0.9+/-0.1 to 16+/-6 nmol/L, which was not enhanced by concomitant infusion of 0.5 ng/kg per minute angiotensin II. In conclusion, we did not observe any facilitation of cardiac norepinephrine release by angiotensin II under basal conditions and during either physiological (ganglion stimulation) or pathophysiological (acute ischemia) sympathetic activation. Hence, angiotensin II is not a local mediator of cardiac sympathetic activity in the in vivo porcine heart

    Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations

    Get PDF
    This study presents a historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations. The historical review traces the developments of the respective concepts. The meta-analysis explores 3929 weight–length relationships of the type W = aLb for 1773 species of fishes. It shows that 82% of the variance in a plot of log a over b can be explained by allometric versus isometric growth patterns and by different body shapes of the respective species. Across species median b = 3.03 is significantly larger than 3.0, thus indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes. The expected range of 2.5 < b < 3.5 is confirmed. Mean estimates of b outside this range are often based on only one or two weight–length relationships per species. However, true cases of strong allometric growth do exist and three examples are given. Within species, a plot of log a vs b can be used to detect outliers in weight–length relationships. An equation to calculate mean condition factors from weight–length relationships is given as Kmean = 100aLb−3. Relative weight Wrm = 100W/(amLbm) can be used for comparing the condition of individuals across populations, where am is the geometric mean of a and bm is the mean of b across all available weight–length relationships for a given species. Twelve recommendations for proper use and presentation of weight–length relationships, condition factors and relative weight are given

    Epinephrine in the heart: uptake and release, but no facilitation of norepinephrine release

    Get PDF
    BACKGROUND: Several studies have suggested that epinephrine augments the release of norepinephrine from sympathetic nerve terminals through stimulation of presynaptic receptors, but evidence pertaining to this mechanism in the heart is scarce and conflicting. Using the microdialysis technique in the porcine heart, we investigated whether epinephrine, taken up by and released from cardiac sympathetic nerves, can increase norepinephrine concentrations in myocardial interstitial fluid (NE(MIF)) under basal conditions and during sympathetic activation. METHODS AND RESULTS: During intracoronary epinephrine infusion of 10, 50, and 100 ng/kg per minute under basal conditions, large increments in interstitial (from 0.31+/-0.05 up to 140+/-30 nmol/L) and coronary venous (from 0.16+/-0.08 up to 228+/-39 nmol/L) epinephrine concentrations were found, but NE(MIF) did not change. Left stellate ganglion stimulation increased NE(MIF) from 3.4+/-0.5 to 8.2+/-1.5 nmol/L, but again, this increase was not enhanced by concomitant intracoronary epinephrine infusion. Intracoronary infusion of tyramine resulted in a negligible increase in epinephrine concentration in myocardial interstitial fluid (EPI(MIF)), whereas 30 minutes after infusion of epinephrine an increase of 9.5 nmol/L in EPI(MIF) was observed, indicating that epinephrine is taken up by and released from cardiac sympathetic neurons. Although 68% to 78% of infused epinephrine was extracted over the heart, the ratio of interstitial to arterial epinephrine concentrations was only approximately 20%, increasing to 29% with neuronal reuptake inhibition. CONCLUSIONS: Our findings demonstrate epinephrine release from cardiac sympathetic neurons, but they do not provide evidence that epinephrine augments cardiac sympathoneural norepinephrine release under basal conditions or during sympathetic activation

    Length of hospital stay for elective electrophysiological procedures: a survey from the European Heart Rhythm Association

    Get PDF
    AIMS: Electrophysiological (EP) operations that have traditionally involved long hospital lengths of stay (LOS) are now being undertaken as day case procedures. The coronavirus disease-19 pandemic served as an impetus for many centres to shorten LOS for EP procedures. This survey explores LOS for elective EP procedures in the modern era. METHODS AND RESULTS: An online survey consisting of 27 multiple-choice questions was completed by 245 respondents from 35 countries. With respect to de novo cardiac implantable electronic device (CIED) implantations, day case procedures were reported for 79.5% of implantable loop recorders, 13.3% of pacemakers (PMs), 10.4% of implantable cardioverter defibrillators (ICDs), and 10.2% of cardiac resynchronization therapy (CRT) devices. With respect to CIED generator replacements, day case procedures were reported for 61.7% of PMs, 49.2% of ICDs, and 48.2% of CRT devices. With regard to ablations, day case procedures were reported for 5.7% of atrial fibrillation (AF) ablations, 10.7% of left-sided ablations, and 17.5% of right-sided ablations. A LOS ≥ 2 days for CIED implantation was reported for 47.7% of PM, 54.5% of ICDs, and 56.9% of CRT devices and for 54.5% of AF ablations, 42.2% of right-sided ablations, and 46.1% of left-sided ablations. Reimbursement (43-56%) and bed availability (20-47%) were reported to have no consistent impact on the organization of elective procedures. CONCLUSION: There is a wide variation in the LOS for elective EP procedures. The LOS for some procedures appears disproportionate to their complexity. Neither reimbursement nor bed availability consistently influenced LOS
    • …
    corecore