554 research outputs found

    Highway to heaven: mammary gland development and differentiation

    Get PDF
    In recent years, the mammary gland epithelium has been shown to be a mixture of differentiated cell populations in a hierarchical relationship with their stem and progenitor cells. However, the mechanisms that regulate their cellular differentiation processes are still unclear. The identification of genes that govern stem and progenitor cell expansion, or that determine daughter cell fate, will be of crucial interest for understanding breast cancer diversity and, ultimately, improving treatment. Two recent analyses have identified some of the key genes that regulate these processes, lighting up the highway to normal mammary gland development

    Cancer stem cell heterogeneity in hereditary breast cancer

    Get PDF
    The cancer stem cell hypothesis proposes that tumors arise in stem or progenitor cells generating in tumors driven by a subcomponent that retains cancer stem cell properties. Recent evidence supports the hypothesis that the BRCA1 gene involved in hereditary breast cancer plays a role in breast stem cell function. Furthermore, studies using mouse BRCA1 knockout models provide evidence for the existence of heterogeneous cancer stem cell populations in tumors generated in these mice. Although these populations may arise from different stem/progenitor cells, they share the expression of a common set of stem cell regulatory genes and show similar characteristics in in vitro mammosphere assays and xenograft models. Furthermore, these 'cancer stem cells' display resistance to chemotherapeutic agents. These studies suggest that breast tumors may display intertumor stem cell heterogeneity. Despite this heterogeneity, cancer stem cells may share common characteristics that can be used for their identification and for therapeutic targeting

    Breast cancer stem cell markers – the rocky road to clinical applications

    Get PDF
    Lately, understanding the role of cancer stem cells in tumor initiation and progression became a major focus in stem cell biology and in cancer research. Considerable efforts, such as the recent studies by Honeth and colleagues, published in the June issue of Breast Cancer Research, are directed towards developing clinical applications of the cancer stem cell concepts. This work shows that the previously described CD44+CD24- stem cell phenotype is associated with basal-type breast cancers in human patients, in particular BRCA1 inherited cancers, but does not correlate with clinical outcome. These very interesting findings caution that the success of our efforts in translating cancer stem cell research into clinical practice depends on how thorough and rigorous we are at characterizing these cells

    Identification of murine mammary stem cells: implications for studies of mammary development and carcinogenesis

    Get PDF
    The epithelial components of the mammary gland are thought to arise from a stem cell capable of both self-renewal and multi-lineage differentiation. Furthermore, there is increasing evidence that mammary carcinomas originate in these cells or their immediate progeny. The recent identification of murine mammary stem cells should facilitate their molecular characterization and help to elucidate their role in mammary carcinogenesis. In addition, an understanding of the biology of these cells including the pathways that regulate their self-renewal and differentiation may suggest new approaches for the prevention and treatment of breast cancer

    Mammary stem cell number as a determinate of breast cancer risk

    Get PDF
    The 'cancer stem cell hypothesis' posits that cancers, including breast cancer, arise in tissue stem or progenitor cells. If this is the case, then it follows that the risk for developing breast cancer may be determined in part by the number of breast stem/progenitor cells that can serve as targets for transformation. Stem cell number may be set during critical windows of development, including in utero, adolescence, and pregnancy. The growth hormone/insulin-like growth factor-1 axis may play an important role in regulating breast stem cell number during these developmental windows, suggesting an important link between this signaling pathway and breast cancer risk

    Breast cancer stem cells: tools and models to rely on

    Get PDF
    There is increasing evidence for the "cancer stem cell (CSC) hypothesis", which holds that cancers are driven by a cellular component that has stem cell properties, including self-renewal, tumorigenicity and multi-lineage differentiation capacity. Researchers and oncologists see in this model an explanation as to why cancer may be so difficult to cure, as well as a promising ground for novel therapeutic strategies. Given the specific stem cell features of self-renewal and differentiation, which drive tumorigenesis and contribute to cellular heterogeneity, each marker and assay designed to isolate and characterize CSCs has to be functionally validated. In this review, we survey tools and markers available or promising to identify breast CSCs. We review the main models used to study breast CSCs and how they challenge the CSC hypothesis

    Basal-like breast cancers: the phenotypic disparity between the cancer-initiating cells and tumor histology

    Get PDF
    Recent evidence suggests that a rare-cell population with a stem cell phenotype maintains breast tumors. Therefore, to devise breast cancer therapies that are more effective, we need to understand the unique biology of these cancer stem cells. Currently, very little is known about the origin of cancer stem cells and their relationship to the tumor phenotype. A recent study from Smalley's group demonstrates that targeting an inactivating Brca1 mutation to the luminal progenitors could yield basal-like breast cancers. This observation suggests that the inherent plasticity of the primitive cells can be hijacked by the tumorigenic processes to produce tumors with an unpredictable phenotype
    • …
    corecore