129 research outputs found
Measurement of the Intrinsic Dissipation of a Macroscopic System in the Quantum Regime
We report on the first measurements of the intrinsic dissipation in a macroscopic system cooled at very low temperature (35 mK) and operating in the quantum regime. The system under study is an rf SQUID with a high quality Josephson junction. Below 50 mK the tunneling probability of escape from a metastable well vs applied flux presents a series of maxima due to energy level quantization. From the shape of the tunneling probability we can evaluate the intrinsic dissipation related to the overall system as well as the coherence time related to the Rabi oscillations in a future macroscopic quantum coherence experiment
Superconducting tunable flux qubit with direct readout scheme
We describe a simple and efficient scheme for the readout of a tunable flux
qubit, and present preliminary experimental tests for the preparation,
manipulation and final readout of the qubit state, performed in incoherent
regime at liquid Helium temperature. The tunable flux qubit is realized by a
double SQUID with an extra Josephson junction inserted in the large
superconducting loop, and the readout is performed by applying a current ramp
to the junction and recording the value for which there is a voltage response,
depending on the qubit state. This preliminary work indicates the feasibility
and efficiency of the scheme.Comment: 10 pages, 5 figure
- …