6,772 research outputs found

    Phase separation in La0.5_{0.5}Ca0.5_{0.5}MnO3_3 doped with 1% 119^{119}Sn detected by M\"ossbauer spectroscopy

    Full text link
    1% 119^{119}Sn-doped La0.5_{0.5}Ca0.5_{0.5}MnO3_3 was studied by M\"ossbauer spectroscopy, magnetic moment and resistivity measurements. The M\"ossbauer spectra below the charge-ordering temperature are explained with ferromagnetic (FM), antiferromagnetic (AF), and ferromagnetic spin cluster (CL) components. The magnetic and thermal hystereses of the relative intensities of the components observed in the M\"ossbauer spectra, and of the bulk properties such as magnetic moment and electrical resistivity, in the temperature range 125-185 K, are characteristic of phase equilibrium in a first-order transition, i.e. of phase separation in the system below the charge-ordering (CO) transition. The cluster component displays a significant hyperfine field up to 125\sim 125 K. Above this temperature it exhibits superparamagnetism, becoming the dominant component above the charge-ordering transition. These results are discussed in the framework of recent investigations of the manganite system with other techniques which also show phase separation.Comment: Accepted in Phys. Rev.

    Abelian dominance and the dual Meissner effect in local unitary gauges in SU(2) gluodynamics

    Get PDF
    Performing highly precise Monte-Carlo simulations of SU(2) gluodynamics, we observe for the first time Abelian dominance in the confining part of the static potential in local unitary gauges such as the F12 gauge. We also study the flux-tube profile between the quark and antiquark in these local unitary gauges and find a clear signal of the dual Meissner effect. The Abelian electric field is found to be squeezed into a flux tube by the monopole supercurrent. This feature is the same as that observed in the non-local maximally Abelian gauge. These results suggest that the Abelian confinement scenario is gauge independent. Observing the important role of space-like monopoles in the Polyakov gauge also indicates that the monopoles defined on the lattice do not necessarily correspond to those proposed by 't Hooft in the context of Abelian projection.Comment: 4 pages, 7 figure

    Gauge invariance of color confinement due to the dual Meissner effect caused by Abelian monopoles

    Full text link
    The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge fixing. Firstly, the static quark-antiquark potential and force are computed with the Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian string tension. These potentials also show the scaling behavior with respect to the change of lattice spacing. Secondly, the profile of the color-electric field between a quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian color direction. The parameters corresponding to the penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e, the Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type1 and type2 (dual) superconductor. These results are summarized that the Abelian fundamental charge defined in an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of color confinement due to the dual Meissner effect caused by Abelian monopoles.Comment: 11 pages, 14 figure

    Growth-related quantitative trait loci in domestic and wild rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Background: Somatic growth is a complex process that involves the action and interaction of genes and environment. A number of quantitative trait loci (QTL) previously identified for body weight and condition factor in rainbow trout (Oncorhynchus mykiss), and two other salmonid species, were used to further investigate the genetic architecture of growth-influencing genes in this species. Relationships among previously mapped candidate genes for growth and their co-localization to identified QTL regions are reported. Furthermore, using a comparative genomic analysis of syntenic rainbow trout linkage group clusters to their homologous regions within model teleost species such as zebrafish, stickleback and medaka, inferences were made regarding additional possible candidate genes underlying identified QTL regions.Results: Body weight (BW) QTL were detected on the majority of rainbow trout linkage groups across 10 parents from 3 strains. However, only 10 linkage groups (i.e., RT-3, -6, -8, -9, -10, -12, -13, -22, -24, -27) possessed QTL regions with chromosome-wide or genome-wide effects across multiple parents. Fewer QTL for condition factor (K) were identified and only six instances of co-localization across families were detected (i.e. RT-9, -15, -16, -23, -27, -31 and RT-2/9 homeologs). Of note, both BW and K QTL co-localize on RT-9 and RT-27. The incidence of epistatic interaction across genomic regions within different female backgrounds was also examined, and although evidence for interaction effects within certain QTL regions were evident, these interactions were few in number and statistically weak. Of interest, however, was the fact that these predominantly occurred within K QTL regions. Currently mapped growth candidate genes are largely congruent with the identified QTL regions. More QTL were detected in male, compared to female parents, with the greatest number evident in an F 1male parent derived from an intercross between domesticated and wild strain of rainbow trout which differed strongly in growth rate.Conclusions: Strain background influences the degree to which QTL effects are evident for growth-related genes. The process of domestication (which primarily selects faster growing fish) may largely reduce the genetic influences on growth-specific phenotypic variation. Although heritabilities have been reported to be relatively high for both BW and K growth traits, the genetic architecture of K phenotypic variation appears less defined (i.e., fewer major contributing QTL regions were identified compared with BW QTL regions)

    Mapping the CMB II: the second flight of the QMAP experiment

    Full text link
    We report the results from the second flight of QMAP, an experiment to map the cosmic microwave background near the North Celestial Pole. We present maps of the sky at 31 and 42 GHz as well as a measurement of the angular power spectrum covering the l-range 40-200. Anisotropy is detected at about 20 sigma and is in agreement with previous results at these angular scales. We also report details of the data reduction and analysis techniques which were used for both flights of QMAP.Comment: 4 pages, with 5 figures included. Submitted to ApJL. Window functions and color figures are available at http://pupgg.princeton.edu/~cmb/welcome.htm

    Galactic microwave emission at degree angular scales

    Get PDF
    We cross-correlate the Saskatoon Ka and Q-Band Cosmic Microwave Background (CMB) data with different maps to quantify possible foreground contamination. We detect a marginal correlation (2 sigma) with the Diffuse Infrared Background Experiment (DIRBE) 240, 140 and 100 microm maps, but we find no significant correlation with point sources, with the Haslam 408 MHz map or with the Reich and Reich 1420 MHz map. The rms amplitude of the component correlated with DIRBE is about 20% of the CMB signal. Interpreting this component as free-free emission, this normalization agrees with that of Kogut et al. (1996a; 1996b) and supports the hypothesis that the spatial correlation between dust and warm ionized gas observed on large angular scales persists to smaller angular scales. Subtracting this contribution from the CMB data reduces the normalization of the Saskatoon power spectrum by only a few percent.Comment: Minor revisions to match published version. 14 pages, with 2 figures included. Color figure and links at http://www.sns.ias.edu/~angelica/foreground.htm

    The time resolution of the St. Petersburg paradox

    Full text link
    A resolution of the St. Petersburg paradox is presented. In contrast to the standard resolution, utility is not required. Instead, the time-average performance of the lottery is computed. The final result can be phrased mathematically identically to Daniel Bernoulli's resolution, which uses logarithmic utility, but is derived using a conceptually different argument. The advantage of the time resolution is the elimination of arbitrary utility functions.Comment: 20 pages, 1 figur

    Y-chromosomal DNA markers for discrimination of chemical substance and effluent effects on sexual differentiation in Salmon

    Full text link
    corecore