192 research outputs found

    Regulation and functions of bacterial PNPase

    Get PDF
    Polynucleotide phosphorylase (PNPase) is an exoribonuclease that catalyzes the processive phosphorolytic degradation of RNA from the 3\u2032-end. The enzyme catalyzes also the reverse reaction of polymerization of nucleoside diphosphates that has been implicated in the generation of heteropolymeric tails at the RNA 3\u2032-end. The enzyme is widely conserved and plays a major role in RNA decay in both Gram-negative and Gram-positive bacteria. Moreover, it participates in maturation and quality control of stable RNA. PNPase autoregulates its own expression at post-transcriptional level through a complex mechanism that involves the endoribonuclease RNase III and translation control. The activity of PNPase is modulated in an intricate and still unclear manner by interactions with small molecules and recruitment in different multiprotein complexes. Not surprisingly, given the wide spectrum of PNPase substrates, PNPase-defective mutations in different bacterial species have pleiotropic effects and perturb the execution of genetic programs involving drastic changes in global gene expression such as biofilm formation, growth at suboptimal temperatures, and virulence

    RNase III-independent autogenous regulation of Escherichia coli polynucleotide phosphorylase via translational repression

    Get PDF
    The complex post-transcriptional regulation mechanism of Escherichia coli pnp gene, which encodes the phosphorolytic exoribonuclease polynucleotide phosphorylase (PNPase), involves two endoribonucleases, namely RNase III and RNase E, and PNPase itself, which thus autoregulates its own expression. The models proposed for pnp autoregulation posit that the target of PNPase is a mature pnp mRNA previously processed at its 5' -end by RNase III, rather than the primary pnp transcript (RNase III-dependent models) and that PNPase activity eventually leads to pnp mRNA degradation by RNase E. However, some published data suggest that pnp expression may also be regulated through a PNPase-dependent, RNase III-independent mechanism. To address this issue, we constructed isogenic \u394pnp rnc(+) and \u394pnp \u394rnc strains with a chromosomal pnp-lacZ translational fusion and measured \u3b2-galactosidase activity in the absence and presence of PNPase expressed by a plasmid. Our results show that PNPase also regulates its own expression via a reversible RNase III-independent pathway acting upstream of the RNase III-dependent branch. This pathway requires the PNPase RNA binding domains KH and S1, but not its phosphorolytic activity. We suggest that the RNase III-independent autoregulation of PNPase occurs at the level of translational repression, possibly by competition for pnp primary transcript between PNPase and the ribosomal protein S1. In Escherichia coli, polynucleotide phosphorylase (PNPase, encoded by pnp) posttranscriptionally regulates its own expression. The two models proposed so far posit a two-step mechanism in which RNase III, by cutting the leader region of the pnp primary transcript, creates the substrate for PNPase regulatory activity, eventually leading to pnp mRNA degradation by RNase E. In this work, we provide evidence supporting an additional pathway for PNPase autogenous regulation in which PNPase acts as a translational repressor independently of RNase III cleavage. Our data make a new contribution to the understanding of the regulatory mechanism of pnp mRNA, a process long since considered a paradigmatic example of posttranscriptional regulation at the level of mRNA stability

    Algebraic models of change of groups functors in (co)free rational equivariant spectra

    Full text link
    Greenlees-Shipley and Pol and the author have given an algebraic model for rational (co)free equivariant spectra. We give a model categorical argument showing that the induction-restriction-coinduction functors between categories of (co)free rational equivariant spectra correspond to functors between the algebraic models in the case of connected compact Lie groups.Comment: 38p

    Polynucleotide phosphorylase is implicated in homologous recombination and DNA repair in Escherichia coli

    Get PDF
    Background: Polynucleotide phosphorylase (PNPase, encoded by pnp) is generally thought of as an enzyme dedicated to RNA metabolism. The pleiotropic effects of PNPase deficiency is imputed to altered processing and turnover of mRNAs and small RNAs, which in turn leads to aberrant gene expression. However, it has long since been known that this enzyme may also catalyze template-independent polymerization of dNDPs into ssDNA and the reverse phosphorolytic reaction. Recently, PNPase has been implicated in DNA recombination, repair, mutagenesis and resistance to genotoxic agents in diverse bacterial species, raising the possibility that PNPase may directly, rather than through control of gene expression, participate in these processes. Results: In this work we present evidence that in Escherichia coli PNPase enhances both homologous recombination upon P1 transduction and error prone DNA repair of double strand breaks induced by zeocin, a radiomimetic agent. Homologous recombination does not require PNPase phosphorolytic activity and is modulated by its RNA binding domains whereas error prone DNA repair of zeocin-induced DNA damage is dependent on PNPase catalytic activity and cannot be suppressed by overexpression of RNase II, the other major enzyme (encoded by rnb) implicated in exonucleolytic RNA degradation. Moreover, E. coli pnp mutants are more sensitive than the wild type to zeocin. This phenotype depends on PNPase phosphorolytic activity and is suppressed by rnb, thus suggesting that zeocin detoxification may largely depend on RNA turnover. Conclusions: Our data suggest that PNPase may participate both directly and indirectly through regulation of gene expression to several aspects of DNA metabolism such as recombination, DNA repair and resistance to genotoxic agents
    • …
    corecore