2,467 research outputs found

    Sound propagation over uneven ground and irregular topography

    Get PDF
    Theoretical, computational, and experimental techniques for predicting the effects of irregular topography on long range sound propagation in the atmosphere was developed. Irregular topography here is understood to imply a ground surface that is not idealized as being perfectly flat or that is not idealized as having a constant specific acoustic impedance. The interest focuses on circumstances where the propagation is similar to what might be expected for noise from low altitude air vehicles flying over suburban or rural terrain, such that rays from the source arrive at angles close to grazing incidence

    Emotional and Adrenocortical Responses of Infants to the Strange Situation: The Differential Function of Emotional Expression

    Get PDF
    The aim of the study was to investigate biobehavioural organisation in infants with different qualities of attachment. Quality of attachment (security and disorganisation), emotional expression, and adrenocortical stress reactivity were investigated in a sample of 106 infants observed during Ainsworth’s Strange Situation at the age of 12 months. In addition, behavioural inhibition was assessed from maternal reports. As expected, securely attached infants did not show an adrenocortical response. Regarding the traditionally defined insecurely attached groups, adrenocortical activation during the strange situation was found for the ambivalent group, but not for the avoidant one. Previous ndings of increased adrenocortical activity in disorganised infants could not be replicated. In line with previous ndings, adrenocortical activation was most prominent in insecure infants with high behavioural inhibition indicating the function of a secure attachment relationship as a social buffer against less adaptive temperamental dispositions. Additional analyses indicated that adrenocortical reactivity and behavioural distress were not based on common activation processes. Biobehavioural associations within the different attachment groups suggest that biobehavioural processes in securely attached infants may be different from those in insecurely attached and disorganised groups. Whereas a coping model may be applied to describe the biobehavioural organisation of secure infants, an arousal model explanation may be more appropriate for the other groups

    Sound propagation over uneven ground and irregular topography

    Get PDF
    The development of theoretical, computational, and experimental techniques for predicting the effects of irregular topography on long range sound propagation in the atmosphere is discussed. Irregular topography here is understood to imply a ground surface that (1) is not idealizable as being perfectly flat or (2) that is not idealizable as having a constant specific acoustic impedance. The study focuses on circumstances where the propagation is similar to what might be expected for noise from low-altitude air vehicles flying over suburban or rural terrain, such that rays from the source arrive at angles close to grazing incidence

    Bose-Einstein condensates with attractive 1/r interaction: The case of self-trapping

    Full text link
    Amplifying on a proposal by O'Dell et al. for the realization of Bose-Einstein condensates of neutral atoms with attractive 1/r1/r interaction, we point out that the instance of self-trapping of the condensate, without external trap potential, is physically best understood by introducing appropriate "atomic" units. This reveals a remarkable scaling property: the physics of the condensate depends only on the two parameters N2a/auN^2 a/a_u and γ/N2\gamma/N^2, where NN is the particle number, aa the scattering length, aua_u the "Bohr" radius and γ\gamma the trap frequency in atomic units. We calculate accurate numerical results for self-trapping wave functions and potentials, for energies, sizes and peak densities, and compare with previous variational results. As a novel feature we point out the existence of a second solution of the extended Gross-Pitaevskii equation for negative scattering lengths, with and without trapping potential, which is born together with the ground state in a tangent bifurcation. This indicates the existence of an unstable collectively excited state of the condensate for negative scattering lengths.Comment: 7 pages, 7 figures, to appear in Phys. Rev.

    Mechanistic Modelling of Grassland Energy Balance

    Get PDF

    Oscillatory Energy Exchange Between Waves Coupled by a Dynamic Artificial Crystal

    Full text link
    We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium whilst a wave is inside, this wave is coupled to a secondary counter-propagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency difference between the coupled waves. The effect is demonstrated with spin waves in a dynamic magnonic crystal.Comment: 5 pages, 4 figure

    Relation between the eigenfrequencies of Bogoliubov excitations of Bose-Einstein condensates and the eigenvalues of the Jacobian in a time-dependent variational approach

    Full text link
    We study the relation between the eigenfrequencies of the Bogoliubov excitations of Bose-Einstein condensates, and the eigenvalues of the Jacobian stability matrix in a variational approach which maps the Gross-Pitaevskii equation to a system of equations of motion for the variational parameters. We do this for Bose-Einstein condensates with attractive contact interaction in an external trap, and for a simple model of a self-trapped Bose-Einstein condensate with attractive 1/r interaction. The stationary solutions of the Gross-Pitaevskii equation and Bogoliubov excitations are calculated using a finite-difference scheme. The Bogoliubov spectra of the ground and excited state of the self-trapped monopolar condensate exhibits a Rydberg-like structure, which can be explained by means of a quantum defect theory. On the variational side, we treat the problem using an ansatz of time-dependent coupled Gaussians combined with spherical harmonics. We first apply this ansatz to a condensate in an external trap without long-range interaction, and calculate the excitation spectrum with the help of the time-dependent variational principle. Comparing with the full-numerical results, we find a good agreement for the eigenfrequencies of the lowest excitation modes with arbitrary angular momenta. The variational method is then applied to calculate the excitations of the self-trapped monopolar condensates, and the eigenfrequencies of the excitation modes are compared.Comment: 15 pages, 12 figure

    Semiclassical quantization of the hydrogen atom in crossed electric and magnetic fields

    Get PDF
    The S-matrix theory formulation of closed-orbit theory recently proposed by Granger and Greene is extended to atoms in crossed electric and magnetic fields. We then present a semiclassical quantization of the hydrogen atom in crossed fields, which succeeds in resolving individual lines in the spectrum, but is restricted to the strongest lines of each n-manifold. By means of a detailed semiclassical analysis of the quantum spectrum, we demonstrate that it is the abundance of bifurcations of closed orbits that precludes the resolution of finer details. They necessitate the inclusion of uniform semiclassical approximations into the quantization process. Uniform approximations for the generic types of closed-orbit bifurcation are derived, and a general method for including them in a high-resolution semiclassical quantization is devised

    Semiclassical Quantization by Pade Approximant to Periodic Orbit Sums

    Full text link
    Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose a method for semiclassical quantization based upon the Pade approximant to the periodic orbit sums. The Pade approximant allows the re-summation of the typically exponentially divergent periodic orbit terms. The technique does not depend on the existence of a symbolic dynamics and can be applied to both bound and open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.Comment: 7 pages, 3 figures, submitted to Europhys. Let
    • …
    corecore