27,614 research outputs found
Quantum secret sharing between m-party and n-party with six states
We propose a quantum secret sharing scheme between -party and -party
using three conjugate bases, i.e. six states. A sequence of single photons,
each of which is prepared in one of the six states, is used directly to encode
classical information in the quantum secret sharing process. In this scheme,
each of all members in group 1 choose randomly their own secret key
individually and independently, and then directly encode their respective
secret information on the states of single photons via unitary operations, then
the last one (the th member of group 1) sends of the resulting qubits
to each of group 2. By measuring their respective qubits, all members in group
2 share the secret information shared by all members in group 1. The secret
message shared by group 1 and group 2 in such a way that neither subset of each
group nor the union of a subset of group 1 and a subset of group 2 can extract
the secret message, but each whole group (all the members of each group) can.
The scheme is asymptotically 100% in efficiency. It makes the Trojan horse
attack with a multi-photon signal, the fake-signal attack with EPR pairs, the
attack with single photons, and the attack with invisible photons to be
nullification. We show that it is secure and has an advantage over the one
based on two conjugate bases. We also give the upper bounds of the average
success probabilities for dishonest agent eavesdropping encryption using the
fake-signal attack with any two-particle entangled states. This protocol is
feasible with present-day technique.Comment: 7 page
Efficient quantum cryptography network without entanglement and quantum memory
An efficient quantum cryptography network protocol is proposed with
d-dimension polarized photons, without resorting to entanglement and quantum
memory. A server on the network, say Alice, provides the service for preparing
and measuring single photons whose initial state are |0>. The users code the
information on the single photons with some unitary operations. For preventing
the untrustworthy server Alice from eavesdropping the quantum lines, a
nonorthogonal-coding technique (decoy-photon technique) is used in the process
that the quantum signal is transmitted between the users. This protocol does
not require the servers and the users to store the quantum state and almost all
of the single photons can be used for carrying the information, which makes it
more convenient for application than others with present technology. We also
discuss the case with a faint laser pulse.Comment: 4 pages, 1 figures. It also presented a way for preparing decoy
photons without a sinigle-photon sourc
New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing
We investigate a four-state system interacting with long and short laser
pulses in a weak probe beam approximation. We show that when all lasers are
tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM)
field is strongly absorbed. The part which is not absorbed has the exact
intensity required to destructively interfere with the excitation pathway
involved in producing the FWM state. We show that with this three-photon
destructive interference, the conversion efficiency can still be as high as
25%. Contrary to common belief,our calculation shows that this process, where
an ideal one-photon electromagnetically induced transparency is established, is
not most suitable for high efficiency conversion. With appropriate
phase-matching and propagation distance, and when the three-photon destructive
interference does not occur, we show that the photon flux conversion efficiency
is independent of probe intensity and can be close to 100%. In addition, we
show clearly that the conversion efficiency is not determined by the maximum
atomic coherence between two lower excited states, as commonly believed. It is
the combination of phase-matching and constructive interference involving the
two terms arising in producing the mixing wave that is the key element for the
optimized FWM generation. Indeed, in this scheme no appreciable excited state
is produced, so that the atomic coherence between states |0> and |2> is always
very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure
Sequence-based context-aware music recommendation
© 2017, Springer Science+Business Media, LLC. Contextual factors greatly affect users’ preferences for music, so they can benefit music recommendation and music retrieval. However, how to acquire and utilize the contextual information is still facing challenges. This paper proposes a novel approach for context-aware music recommendation, which infers users’ preferences for music, and then recommends music pieces that fit their real-time requirements. Specifically, the proposed approach first learns the low dimensional representations of music pieces from users’ music listening sequences using neural network models. Based on the learned representations, it then infers and models users’ general and contextual preferences for music from users’ historical listening records. Finally, music pieces in accordance with user’s preferences are recommended to the target user. Extensive experiments are conducted on real world datasets to compare the proposed method with other state-of-the-art recommendation methods. The results demonstrate that the proposed method significantly outperforms those baselines, especially on sparse data
Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state
We present a scheme for symmetric multiparty quantum state sharing of an
arbitrary -qubit state with Greenberger-Horne-Zeilinger states following
some ideas from the controlled teleportation [Phys. Rev. A \textbf{72}, 02338
(2005)]. The sender Alice performs Bell-state measurements on her
particles and the controllers need only to take some single-photon product
measurements on their photons independently, not Bell-state measurements, which
makes this scheme more convenient than the latter. Also it does not require the
parties to perform a controlled-NOT gate on the photons for reconstructing the
unknown -qubit state and it is an optimal one as its efficiency for qubits
approaches the maximal value.Comment: 6 pages, no figures; It simplifies the process for sharing an
arbitrary m-qubit state in Phys. Rev. A 72, 022338 (2005) (quant-ph/0501129
Limitations of the Standard Gravitational Perfect Fluid Paradigm
We show that the standard perfect fluid paradigm is not necessarily a valid
description of a curved space steady state gravitational source. Simply by
virtue of not being flat, curved space geometries have to possess intrinsic
length scales, and such length scales can affect the fluid structure. For modes
of wavelength of order or greater than such scales eikonalized geometrical
optics cannot apply and rays are not geodesic. Covariantizing thus entails not
only the replacing of flat space functions by covariant ones, but also the
introduction of intrinsic scales that were absent in flat space. In principle
it is thus unreliable to construct the curved space energy-momentum tensor as
the covariant generalization of a geodesic-based flat spacetime energy-momentum
tensor. By constructing the partition function as an incoherent average over a
complete set of modes of a scalar field propagating in a curved space
background, we show that for the specific case of a static, spherically
symmetric geometry, the steady state energy-momentum tensor that ensues will in
general be of the form
where the
anisotropic is a symmetric, traceless rank two tensor which
obeys . Such a type term is absent for an
incoherently averaged steady state fluid in a spacetime where there are no
intrinsic length scales, and in principle would thus be missed in a
covariantizing of a flat spacetime . While the significance of such
type terms would need to be evaluated on a case by case basis,
through the use of kinetic theory we reassuringly find that the effect of such
type terms is small for weak gravity stars where perfect fluid
sources are commonly used.Comment: Final version to appear in General Relativity and Gravitation (the
final publication is available at http://www.springerlink.com). 29 pages, 1
figur
Analytical Solution of Electron Spin Decoherence Through Hyperfine Interaction in a Quantum Dot
We analytically solve the {\it Non-Markovian} single electron spin dynamics
due to hyperfine interaction with surrounding nuclei in a quantum dot. We use
the equation-of-motion method assisted with a large field expansion, and find
that virtual nuclear spin flip-flops mediated by the electron contribute
significantly to a complete decoherence of transverse electron spin correlation
function. Our results show that a 90% nuclear polarization can enhance the
electron spin time by almost two orders of magnitude. In the long time
limit, the electron spin correlation function has a non-exponential
decay in the presence of both polarized and unpolarized nuclei.Comment: 4 pages, 3 figure
- …