777 research outputs found

    Dynamical Casimir-Polder energy between an excited and a ground-state atom

    Full text link
    We consider the Casimir-Polder interaction between two atoms, one in the ground state and the other in its excited state. The interaction is time-dependent for this system, because of the dynamical self-dressing and the spontaneous decay of the excited atom. We calculate the dynamical Casimir-Polder potential between the two atoms using an effective Hamiltonian approach. The results obtained and their physical meaning are discussed and compared with previous results based on a time-independent approach which uses a non-normalizable dressed state for the excited atom.Comment: 11 page

    Non locality and causal evolution in QFT

    Full text link
    Non locality appearing in QFT during the free evolution of localized field states and in the Feynman propagator function is analyzed. It is shown to be connected to the initial non local properties present at the level of quantum states and then it does not imply a violation of Einstein's causality. Then it is investigated a simple QFT system with interaction, consisting of a classical source coupled linearly to a quantum scalar field, that is exactly solved. The expression for the time evolution of the state describing the system is given. The expectation value of any arbitrary ``good'' local observable, expressed as a function of the field operator and its space and time derivatives, is obtained explicitly at all order in the field-matter coupling constant. These expectation values have a source dependent part that is shown to be always causally retarded, while the non local contributions are source independent and related to the non local properties of zero point vacuum fluctuations.Comment: Submitted to Journal of Physics B: 16 pages: 1 figur

    Geometric phase for an accelerated two-level atom and the Unruh effect

    Full text link
    We study, in the framework of open quantum systems, the geometric phase acquired by a uniformly accelerated two-level atom undergoing nonunitary evolution due to its coupling to a bath of fluctuating vacuum electromagnetic fields in the multipolar scheme. We find that the phase variation due to the acceleration can be in principle observed via atomic interferometry between the accelerated atom and the inertial one, thus providing an evidence of the Unruh effect.Comment: 12 pages, no figure

    Comment on 'Self-dressing and radiation reaction in classical electrodynamics'

    Full text link
    Using the canonical formalism, Compagno and Persico [J. Phys. A: Math. Gen. 35 (2002) 3629--45] have calculated the 'radiation-reaction' force on a uniform spherical charge moving rigidly, slowly and slightly from its position at the time when the transverse electric field is assumed to vanish. This force is shown to result in the same time-averaged self-force as that which has been obtained by different means for the test charge of a Bohr--Rosenfeld field-measurement procedure and which Compagno and Persico claimed to be incorrect.Comment: REVTeX, 4 pages; this version has some cosmetic changes to agree fully with the published version. Reply to this Comment is in G. Compagno and F. Persico, J. Phys. A: Math. Gen. 35, 8965 (2002); response to the Reply is in physics/021005

    Non-local quantum correlations and detection processes in QFT

    Full text link
    Quantum detection processes in QFT must play a key role in the description of quantum field correlations, such as the appearance of entanglement, and of causal effects. We consider the detection in the case of a simple QFT model with a suitable interaction to exact treatment, consisting of a quantum scalar field coupled linearly to a classical scalar source. We then evaluate the response function to the field quanta of two-level point-like quantum model detectors, and analyze the effects of the approximation adopted in standard detection theory. We show that the use of the RWA, that characterizes the Glauber detection model, leads in the detector response to non-local terms corresponding to an instantaneously spreading of source effects over the whole space. Other detector models, obtained with non-standard or the no-application of RWA, give instead local responses to field quanta, apart from source independent vacuum contribution linked to preexisting correlations of zero-point field.Comment: 23 page

    Entanglement degradation in the solid state: interplay of adiabatic and quantum noise

    Get PDF
    We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.Comment: Replaced with published version. Minor change

    Causality and Localization Operators

    Full text link
    The evolution of the expectation values of one and two points scalar field operators and of positive localization operators, generated by an istantaneous point source is non local. Non locality is attributed either to zero point vacuum fluctuations, or to non local operations or to the microcausality principle being no satisfied.Comment: 10 pages; submitted to Physics Letters

    Fluctuations of the Casimir-Polder force between an atom and a conducting wall

    Full text link
    We consider the quantum fluctuations of the Casimir-Polder force between a neutral atom and a perfectly conducting wall in the ground state of the system. In order to obtain the atom-wall force fluctuation we first define an operator directly associated to the force experienced by the atom considered as a polarizable body in an electromagnetic field, and we use a time-averaged force operator in order to avoid ultraviolet divergences appearing in the fluctuation of the force. This time-averaged force operator takes into account that any measurement involves a finite time. We also calculate the Casimir-Polder force fluctuation for an atom between two conducting walls. Experimental observability of these Casimir-Polder force fluctuations is also discussed, as well as the dependence of the relative force fluctuation on the duration of the measurement.Comment: 6 page

    Casimir-Polder potentials as entanglement probe

    Full text link
    We have considered the interaction of a pair of spatially separated two-level atoms with the electromagnetic field in its vacuum state and we have analyzed the amount of entanglement induced between the two atoms by the non local field fluctuations. This has allowed us to characterize the quantum nature of the non local correlations of the electromagnetic field vacuum state as well as to link the induced quantum entanglement with Casimir-Polder potentials.Comment: Published on Europhysics Letters 78 (2007) 3000
    • …
    corecore