625 research outputs found

    On the observational properties of He-burning stars: some clues on the tilt of the HB in metal rich clusters

    Get PDF
    We investigate the predicted Color-Magnitude distribution of metal-rich Horizontal Branch (HB) stars, discussing selected theoretical models computed under various assumptions about the star metallicity and the efficiency of super-adiabatic convection. We find that canonical Zero Age Horizontal Branches with metallicity larger or of the order of Z=0.002 should be all affected by a tilt, by an amount which increases when the metallicity is increased and/or the mixing length is decreased, reaching a tilt of ΔV∌\Delta V \sim0.2 mag in the case of solar metallicity when a mixing length value α\alpha=1.6 is assumed (ΔV\Delta V is the magnitude difference between the top of the blue HB and the fainter magnitude reached by the red HB). Uncertainties in the luminosity of the red HB due to uncertainty in the mixing length value are discussed. We finally discuss the much larger tilt observed in the clusters NGC 6441 and NGC 6388, reporting additional evidence against suggested non-canonical evolutionary scenarios. Numerical experiments show that differential reddening could produce such sloped HBs. Further, HST-PC imaging of NGC 6441 gives clear indications about the occurrence of differential reddening across the cluster. However, the same imaging shows that the observed slope of the red HB {\em is not} an artifact of differential reddening. We finally show that sloping red HBs in metal rich clusters are a common occurrence not necessarily correlated with the appearance of extended blue HB.Comment: 14 pages, 9 figures, Accepted by Ap

    Synthetic Stellar Clusters for Pop III

    Get PDF
    We present preliminary results of an incoming theoretical work concerning the integrated properties of the Population III clusters of stars. On the basis of synthetic Color-Magnitude Diagrams, we provide a grid of optical and near-IR colors of Simple Stellar Populations with very low metallicity (Z=10−10^{-10} and Z=10−6^{-6}) and age which spans from 10 Myr to 15 Gyr. A comparison with higher metallicities up to 0.006 is also shown, disclosing sizable differences in the CMD morphology, integrated colors and Spectral Energy Distribution (SED).Comment: 2 pages, incl. 2 figures, "The First Stars", Proceedings of the second MPA/ESO workshop, Eds.: Weiss, Abel, Hill, Springer, Heidelberg, 200

    The Initial Helium Abundance of the Galactic Globular Cluster System

    Full text link
    We estimate the initial He content in about 30% of the Galactic globular clusters (GGCs) from new star counts we have performed on the recently published HST snapshot database of Colour Magnitude Diagrams (Piotto et al. 2002). More in detail, we use the so-called RR-parameter and estimate the He content from a calibration based on a recently updated set of stellar models. We performed an accurate statistical analysis in order to assess whether GGCs show a statistically significant spread in their initial He abundances, and whether there is a correlation with the metallicity. We do not find any significant dependence of the He abundance on the GC metallicity; this provides an important constraint for models of Galaxy formation and evolution. Apart from GGCs with the bluest HB morphology, the observed spread in the individual He abundances is statistically compatible with the individual errors. This means that either there is no intrinsic He spread among the GGCs, or that this is masked by the errors. In the latter case we have estimated a firm 1σ\sigma upper limit of 0.019 to the possible intrinsic spread. In case of the GGCs with the bluest HB morphology we detect a significant spread towards higher abundances inconsistent with the individual errors. In the hypothesis that the intrinsic dispersion on the individual He abundances is zero, taking into account the errors on the individual R-parameter estimates, as well as the uncertainties on the GGC [M/H] scale and theoretical calibration, we have determined an initial He abundance Y(GGC)=0.250\pm0.006 a value in perfect agreement with current estimates based on CMB radiation analyses and cosmological nucleosynthesis computations.Comment: 10 pages, 4 figures, in press on Astronomy & Astrophysic

    Galactic Globular Clusters as a test for Very Low-Mass stellar models

    Full text link
    We make use of the Next Generation model atmospheres by Allard et al. (1997) and Hauschildt, Allard & Baron (1999) to compute theoretical models for low and very low-mass stars for selected metallicities in the range Z= 0.0002 to 0.002. On this basis, we present theoretical predictions covering the sequence of H-burning stars as observed in galactic globulars from the faint end of the Main Sequence up to, and beyond, the cluster Turn Off. The role played by the new model atmospheres is discussed, showing that present models appear in excellent agreement with models by Baraffe et al. (1997) as computed on quite similar physical basis. One finds that the theoretical mass-luminosity relations based on this updated set of models, are in good agreement with the empirical data provided by Henry & McCarthy (1993). Comparison with HST observation discloses that the location in the Color-Magnitude diagram of the lower Main Sequence in galactic globular clusters appears again in good agreement with the predicted sensitive dependence of these sequences on the cluster metallicity.Comment: accepted for pubblication on MNRA
    • 

    corecore