16,130 research outputs found

    Effective Operators for Double-Beta Decay

    Get PDF
    We use a solvable model to examine double-beta decay, focusing on the neutrinoless mode. After examining the ways in which the neutrino propagator affects the corresponding matrix element, we address the problem of finite model-space size in shell-model calculations by projecting our exact wave functions onto a smaller subspace. We then test both traditional and more recent prescriptions for constructing effective operators in small model spaces, concluding that the usual treatment of double-beta-decay operators in realistic calculations is unable to fully account for the neglected parts of the model space. We also test the quality of the Quasiparticle Random Phase Approximation and examine a recent proposal within that framework to use two-neutrino decay to fix parameters in the Hamiltonian. The procedure eliminates the dependence of neutrinoless decay on some unfixed parameters and reduces the dependence on model-space size, though it doesn't eliminate the latter completely.Comment: 10 pages, 8 figure

    Reply on the comment on the paper "Superconducting transition in Nb nanowires fabricated using focused ion beam"

    Full text link
    In this communication we present our response to the recent comment of A. Engel regarding our paper on FIB- fabricated Nb nanowires (see Vol. 20 (2009) Pag. 465302). After further analysis and additional experimental evidence, we conclude that our interpretation of the experimental results in light of QPS theory is still valid when compared with the alternative proximity-based model as proposed by A. Engel.Comment: 3 pages, 1 figure, accepted by Nanotechnolog

    Comment: Superconducting transition in Nb nanowires fabricated using focused ion beam

    Full text link
    In a recent paper Tettamanzi et al (2009 Nanotechnology \bf{20} 465302) describe the fabrication of superconducting Nb nanowires using a focused ion beam. They interpret their conductivity data in the framework of thermal and quantum phase slips below TcT_c. In the following we will argue that their analysis is inappropriate and incomplete, leading to contradictory results. Instead, we propose an interpretation of the data within a SN proximity model.Comment: 3 pages, 1 figure accepted in Nanotechnolog

    Meson and baryon spectrum for QCD with two light dynamical quarks

    Full text link
    We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 16**3 x 32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4) and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results on ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular at small pion masses. We discuss the possible appearance of scattering states in various channels, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.Comment: 27 pages, 29 figures, 11 table

    Approximate Treatment of Lepton Distortion in Charged-Current Neutrino Scattering from Nuclei

    Get PDF
    The partial-wave expansion used to treat the distortion of scattered electrons by the nuclear Coulomb field is simpler and considerably less time-consuming when applied to the production of muons and electrons by low and intermediate-energy neutrinos. For angle-integrated cross sections, however, a modification of the "effective-momentum-transfer" approximation seems to work so well that for muons the full distorted-wave treatment is usually unnecessary, even at kinetic energies as low as an MeV and in nuclei as heavy as lead. The method does not work as well for electron production at low energies, but there a Fermi function usually proves adequate. Scattering of electron-neutrinos from muon decay on iodine and of atmospheric neutrinos on iron are discussed in light of these results.Comment: 11 pages, LaTeX, submitted to Phys. Rev.

    The effect of a cutoff on pushed and bistable fronts of the reaction diffusion equation

    Full text link
    We give an explicit formula for the change of speed of pushed and bistable fronts of the reaction diffusion equation when a small cutoff is applied at the unstable or metastable equilibrium point. The results are valid for arbitrary reaction terms and include the case of density dependent diffusion.Comment: 7 page
    • …
    corecore