4 research outputs found

    Phytochemical profile and biological activities of crude and purified Leonurus cardiaca extracts

    Get PDF
    Leonurus cardiaca L. (Lamiaceae) is a perennial herb distributed in Asia and Southeastern Europe and has been used in traditional medicine since antiquity for its role against cardiac and gynecological disorders. The polar extracts obtained from L. cardiaca aerial parts contain several compounds among which alkaloids, iridoids, labdane diterpenes, and phenylethanoid glycosides play a major role in conferring protection against the aforementioned diseases. On the other hand, the antioxidant activities and the enzyme inhibitory properties of these extracts have not yet been deeply studied. On the above, in the present study, crude and purified extracts were prepared from the aerial parts of L. cardiaca and have been chemically characterized by spectrophotometric assays and HPLC-DAD-MS analyses. Notably, the content of twelve secondary metabolites, namely phenolic acids (chlorogenic, caffeic, caffeoylmalic and trans-ferulic acids), flavonoids (rutin and quercetin), phenylethanoid glycosides (verbascoside and lavandulifolioside), guanidine pseudoalkaloids (leonurine), iridoids (harpagide), diterpenes (forskolin), and triterpenes (ursolic acid), has been determined. Furthermore, the extracts were tested for their antioxidant capabilities (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC, and ferrous chelating assays) and enzyme inhibitory properties against cholinesterase, tyrosinase, amylase, and glucosidase. The purified extracts contained higher phytochemical content than the crude ones, with caffeoylmalic acid and verbascoside as the most abundant compounds. A linear correlation between total phenolics, radical scavenging activity, and reducing power of extracts has been found. Notably, quercetin, caffeic acid, lavandulifolioside, verbascoside, chlorogenic acid, rutin, and ursolic acid influenced the main variations in the bioactivities found in L. cardiaca extracts. Our findings provide further insights into the chemico-biological traits of L. cardiaca and a scientific basis for the development of nutraceuticals and food supplements

    Influence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams

    No full text
    Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC–MS method, in addition to analysis of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03–96.88% of the total volatile compositions. Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were ethyl hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45 °C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcohols in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing

    Effect of Roasting, Boiling and Frying Processing on 29 Polyphenolics and Antioxidant Activity in Seeds and Shells of Sweet Chestnut (Castanea sativa Mill.)

    No full text
    Sweet chestnuts (Castanea sativa Mill.) are highly prized nuts, and the consumption of fresh chestnuts is usually preceded by roasting, boiling, and frying. The aim of this work was to simultaneously analyze 29 polyphenolic compounds for the first time in raw, boiled, roasted, and fried chestnut seeds and shells using HPLC-MS/MS. Principal component analysis depending on the HPLC-MS/MS results showed that roasting, boiling, and frying affected the contents of 25 detected phenolic compounds in a unique way, of which the most notable phenolics were gallic acid, ellagic acid, and (+)-catechin. Additionally, total polyphenolic content (TPC) was measured via the Folin–Ciocalteu method, and TPC in seeds and inner and outer shells was increased in all treatments except for microwave-roasted seeds. Furthermore, the higher TPC in the inner and outer shells when compared to seeds supported their higher antioxidant activity (AOA) determined via the DPPH experiment. AOA of seeds was increased in all treatments, while the AOA of shells was higher in roasting and lower in boiling and frying treatments. The assessment of these changes is necessary so that chestnut seed consumption and the recycling of their shells as a natural source of antioxidants can be maximized
    corecore