17 research outputs found

    Banks’ Level Factors Affecting the Effective Implementation of Anti-Money Laundering Practices in Nepalese Banks: An Employee and Customer Perspectives

    Get PDF
    Purpose: Money laundering can affect global macroeconomic projections, currency markets, and financial stability by fueling shadow economies. Thus, the efficiency of the Anti-Money Laundering (AML) procedure must be investigated. Understanding such elements may help prevent money laundering. This necessitates studies to raise awareness and emphasize its importance. This study sought to assess customer understanding and examine the factors that affect the efficient application of AML regulations in Nepalese banks. Design/Methodology/Approach: This study includes responses from 201 bank consumers and 156 bank employees. The study focused on customers' AML awareness and how bank employees implement AML regulations in their respective banks. Findings: According to the study, consumers apprehend money laundering, terrorist financing, and their implications. According to bank employees, customers are unaware of money laundering and its consequences. Banking and financial institutions should prioritize education and awareness to improve the implementation of anti-money laundering regulations. Control over company sophistication, business ethics, customer awareness, and the AML system all have a favorable influence on Nepali banks' AML policies. The analysis reveals that business sophistication control is quite important. Originality: The study focused on consumer and employee AML knowledge, revealing ground-level perspectives. The study found the variables related to the bank's management and compliance department's views on AML policy implementation. This research assists government agencies and policymakers in developing national anti-money laundering measures and aids academics in AML procedure implementation

    Linking Isotope Exchange with Fe(II)-Catalyzed Dissolution of Iron(hydr)oxides in the Presence of the Bacterial Siderophore Desferrioxamine-B

    No full text
    Dissolution of Fe(III) phases is a key process in making iron available to biota and in the mobilization of associated trace elements. Recently, we have demonstrated that submicromolar concentrations of Fe(II) significantly accelerate rates of ligand-controlled dissolution of Fe(III) (hydr)oxides at circumneutral pH. Here, we extend this work by studying isotope exchange and dissolution with lepidocrocite (Lp) and goethite (Gt) in the presence of 20 or 50 mu M desferrioxamine-B (DFOB). Experiments with Lp at pH 7.0 were conducted in carbonate-buffered suspensions to mimic environmental conditions. We applied a simple empirical model to determine dissolution rates and a more complex kinetic model that accounts for the observed isotope exchange and catalytic effect of Fe(II). The fate of added tracer Fe-57(II) was strongly dependent on the order of addition of Fe-57(II) and ligand. When DFOB was added first, tracer Fe-57 remained in solution. When Fe-57(II) was added first, isotope exchange between surface and solution could be observed at pH 6.0 but not at pH 7.0 and 8.5 where Fe-57(II) was almost completely adsorbed. During dissolution of Lp with DFOB, ratios of released Fe-56 and Fe-57 were largely independent of DFOB concentrations. In the absence of DFOB, addition of phenanthroline 30 min after tracer Fe-57 desorbed predominantly Fe-56(II), indicating that electron transfer from adsorbed Fe-57 to Fe-56 of the Lp surface occurs on a time scale of minutes to hours. In contrast, comparable experiments with Gt desorbed predominantly Fe-57(II), suggesting a longer time scale for electron transfer on the Gt surface. Our results show that addition of 1-5 mu M Fe(IT) leads to dynamic charge transfer between dissolved and adsorbed species and to isotope exchange at the surface, with the dissolution of Lp by ligands accelerated by up to 60-fold

    Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB

    No full text
    Low bioavailability of iron due to poor solubility of iron(hydr)oxides limits the growth of microorganisms and plants in soils and aquatic environments. Previous studies described accelerated dissolution of iron(hydr)oxides under continuous illumination, but did not distinguish between photoreductive dissolution and non-reductive processes in which photogenerated Fe(II) catalyzes ligand-controlled dissolution. Here we show that short illuminations (5–15 min) accelerate the dissolution of iron(hydr)oxides by ligands during subsequent dark periods under anoxic conditions. Suspensions of lepidocrocite (Lp) and goethite (Gt) (1.13 mM) with 50 μM EDTA or DFOB were illuminated with UV-A light of comparable intensity to sunlight (pH 7.0, bicarbonate-CO2 buffered solutions). During illumination, the rate of Fe(II) production was highest with Gt-EDTA; followed by Lp-EDTA > Lp-DFOB > Lp > Gt-DFOB > Gt. Under anoxic conditions, photochemically produced Fe(II) increased dissolution rates during subsequent dark periods by factors of 10–40 and dissolved Fe(III) reached 50 μM with DFOB and EDTA. Under oxic conditions, dissolution rates increased by factors of 3–5 only during illumination. With DFOB dissolved Fe(III) reached 35 μM after 10 h of illumination, while with EDTA it peaked at 15 μM and then decreased to below 2 μM. The observations are explained and discussed based on a kinetic model. The results suggest that in anoxic bottom water of ponds and lakes, or in microenvironments of algal blooms, short illuminations can dramatically increase the bioavailability of iron by Fe(II)-catalyzed ligand-controlled dissolution. In oxic environments, photostable ligands such as DFOB can maintain Fe(III) in solution during extended illumination.ISSN:0045-6535ISSN:1879-129

    Linking Isotope Exchange with Fe(II)-Catalyzed Dissolution of Iron(hydr)oxides in the Presence of the Bacterial Siderophore Desferrioxamine-B

    No full text
    Dissolution of Fe(III) phases is a key process in making iron available to biota and in the mobilization of associated trace elements. Recently, we have demonstrated that submicromolar concentrations of Fe(II) significantly accelerate rates of ligand-controlled dissolution of Fe(III) (hydr)oxides at circumneutral pH. Here, we extend this work by studying isotope exchange and dissolution with lepidocrocite (Lp) and goethite (Gt) in the presence of 20 or 50 μM desferrioxamine-B (DFOB). Experiments with Lp at pH 7.0 were conducted in carbonate-buffered suspensions to mimic environmental conditions. We applied a simple empirical model to determine dissolution rates and a more complex kinetic model that accounts for the observed isotope exchange and catalytic effect of Fe(II). The fate of added tracer 57Fe(II) was strongly dependent on the order of addition of 57Fe(II) and ligand. When DFOB was added first, tracer 57Fe remained in solution. When 57Fe(II) was added first, isotope exchange between surface and solution could be observed at pH 6.0 but not at pH 7.0 and 8.5 where 57Fe(II) was almost completely adsorbed. During dissolution of Lp with DFOB, ratios of released 56Fe and 57Fe were largely independent of DFOB concentrations. In the absence of DFOB, addition of phenanthroline 30 min after tracer 57Fe desorbed predominantly 56Fe(II), indicating that electron transfer from adsorbed 57Fe to 56Fe of the Lp surface occurs on a time scale of minutes to hours. In contrast, comparable experiments with Gt desorbed predominantly 57Fe(II), suggesting a longer time scale for electron transfer on the Gt surface. Our results show that addition of 1–5 μM Fe(II) leads to dynamic charge transfer between dissolved and adsorbed species and to isotope exchange at the surface, with the dissolution of Lp by ligands accelerated by up to 60-fold

    Linking Isotope Exchange with Fe(II)-Catalyzed Dissolution of Iron(hydr)oxides in the Presence of the Bacterial Siderophore Desferrioxamine-B

    No full text
    Dissolution of Fe(III) phases is a key process in making iron available to biota and in the mobilization of associated trace elements. Recently, we have demonstrated that submicromolar concentrations of Fe(II) significantly accelerate rates of ligand-controlled dissolution of Fe(III) (hydr)oxides at circumneutral pH. Here, we extend this work by studying isotope exchange and dissolution with lepidocrocite (Lp) and goethite (Gt) in the presence of 20 or 50 μM desferrioxamine-B (DFOB). Experiments with Lp at pH 7.0 were conducted in carbonate-buffered suspensions to mimic environmental conditions. We applied a simple empirical model to determine dissolution rates and a more complex kinetic model that accounts for the observed isotope exchange and catalytic effect of Fe(II). The fate of added tracer 57Fe(II) was strongly dependent on the order of addition of 57Fe(II) and ligand. When DFOB was added first, tracer 57Fe remained in solution. When 57Fe(II) was added first, isotope exchange between surface and solution could be observed at pH 6.0 but not at pH 7.0 and 8.5 where 57Fe(II) was almost completely adsorbed. During dissolution of Lp with DFOB, ratios of released 56Fe and 57Fe were largely independent of DFOB concentrations. In the absence of DFOB, addition of phenanthroline 30 min after tracer 57Fe desorbed predominantly 56Fe(II), indicating that electron transfer from adsorbed 57Fe to 56Fe of the Lp surface occurs on a time scale of minutes to hours. In contrast, comparable experiments with Gt desorbed predominantly 57Fe(II), suggesting a longer time scale for electron transfer on the Gt surface. Our results show that addition of 1–5 μM Fe(II) leads to dynamic charge transfer between dissolved and adsorbed species and to isotope exchange at the surface, with the dissolution of Lp by ligands accelerated by up to 60-fold

    Fe(II)-Catalyzed Ligand-Controlled Dissolution of Iron(hydr)oxides

    No full text
    Dissolution of iron(III)phases is a key process in soils, surface waters, and the ocean. Previous studies found that traces of Fe(II) can greatly increase ligand controlled dissolution rates at acidic pH, but the extent that this also occurs at circumneutral pH and what mechanisms are involved are not known. We addressed these questions with infrared spectroscopy and 57Fe isotope exchange experiments with lepidocrocite (Lp) and 50 μM ethylenediaminetetraacetate (EDTA) at pH 6 and 7. Addition of 0.2–10 μM Fe(II) led to an acceleration of the dissolution rates by factors of 7–31. Similar effects were observed after irradiation with 365 nm UV light. The catalytic effect persisted under anoxic conditions, but decreased as soon as air or phenanthroline was introduced. Isotope exchange experiments showed that added 57Fe remained in solution, or quickly reappeared in solution when EDTA was added after 57Fe(II), suggesting that catalyzed dissolution occurred at or near the site of 57Fe incorporation at the mineral surface. Infrared spectra indicated no change in the bulk, but changes in the spectra of adsorbed EDTA after addition of Fe(II) were observed. A kinetic model shows that the catalytic effect can be explained by electron transfer to surface Fe(III) sites and rapid detachment of Fe(III)EDTA due to the weaker bonds to reduced sites. We conclude that the catalytic effect of Fe(II) on dissolution of Fe(III)(hydr)oxides is likely important under circumneutral anoxic conditions and in sunlit environments

    Low Fe(II) Concentrations Catalyze the Dissolution of Various Fe(III) (hydr)oxide Minerals in the Presence of Diverse Ligands and over a Broad pH Range

    No full text
    Dissolution of Fe(III) (hydr)oxide minerals by siderophores (i.e., Fe-specific, biogenic ligands) is an important step in Fe acquisition in environments where Fe availability is low. The observed coexudation of reductants and ligands has raised the question of how redox reactions might affect ligand-controlled (hydr)oxide dissolution and Fe acquisition. We examined this effect in batch dissolution experiments using two structurally distinct ligands (desferrioxamine B (DFOB) and N,N'-di(2-hydroxybenzyl)-ethylene-diamine-N,N'-diacetic acid (HBED)) and four Fe(III) (hydr)oxide minerals (lepidocrocite, 2-line ferrihydrite, goethite and hematite) over an environmentally relevant pH range (4-8.5). The experiments were conducted under anaerobic conditions with varying concentrations of (adsorbed) Fe(II) as the reductant. We observed a catalytic effect of Fe(II) on ligand-controlled dissolution even at submicromolar Fe(II) concentrations with up to a 13-fold increase in dissolution rate. The effect was larger for HBED than for DFOB. It was observed for all four Fe(III) (hydr)oxide minerals, but it was most pronounced for goethite in the presence of HBED. It was observed over the entire pH range with the largest effect at pH 7 and 8.5, where Fe deficiency typically occurs. The occurrence of this catalytic effect over a range of environmentally relevant conditions and at very low Fe(II) concentrations suggests that redox-catalyzed, ligand-controlled dissolution may be significant in biological Fe acquisition and in redox transition zones

    Fe(II)-Catalyzed Ligand-Controlled Dissolution of Iron(hydr)oxides

    No full text
    Dissolution of iron(III)phases is a key process in soils, surface waters, and the ocean. Previous studies found that traces of Fe(II) can greatly increase ligand controlled dissolution rates at acidic pH, but the extent that this also occurs at circumneutral pH and what mechanisms are involved are not known. We addressed these questions with infrared spectroscopy and 57Fe isotope exchange experiments with lepidocrocite (Lp) and 50 μM ethylenediaminetetraacetate (EDTA) at pH 6 and 7. Addition of 0.2–10 μM Fe(II) led to an acceleration of the dissolution rates by factors of 7–31. Similar effects were observed after irradiation with 365 nm UV light. The catalytic effect persisted under anoxic conditions, but decreased as soon as air or phenanthroline was introduced. Isotope exchange experiments showed that added 57Fe remained in solution, or quickly reappeared in solution when EDTA was added after 57Fe(II), suggesting that catalyzed dissolution occurred at or near the site of 57Fe incorporation at the mineral surface. Infrared spectra indicated no change in the bulk, but changes in the spectra of adsorbed EDTA after addition of Fe(II) were observed. A kinetic model shows that the catalytic effect can be explained by electron transfer to surface Fe(III) sites and rapid detachment of Fe(III)EDTA due to the weaker bonds to reduced sites. We conclude that the catalytic effect of Fe(II) on dissolution of Fe(III)(hydr)oxides is likely important under circumneutral anoxic conditions and in sunlit environments
    corecore