268 research outputs found

    Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast

    Get PDF
    A state-of-the-art, in terms of spatio-temporal resolution (about 10 km and on a hourly basis) and temporal span (35 years), wave hindcast is exploited to update existing assessments of wave energy potential in the Mediterranean Sea. The hindcast, covering the period 1979-2013, has been obtained using WavewatchIII with calibrated source-term parameters recently proposed by L. Mentaschi et al. (2015) [1]. The main advantage of such a calibration is that it takes into account the peculiarity of the Mediterranean basin with respect to other calibrations carried out in the oceans. The high resolution allowed to perform a detailed analysis of wave energy potential characteristics providing information on seasonal and longer term variability necessary for reliable and optimal design of wave energy conversion devices. As a result, the identification of areas where the mean wave power reaches values of the order of 10 kW/m clearly emerge. However, these regions are not necessarily optimal in relation to the efficiency of energy extraction, due to possible relevant time variation of the energy availability. The high temporal resolution allows to address issues related to the time variability of the available resource and thus to provide a complete set of statistical information to carry out optimal design of WEC (wave energy converter)

    Future changes and seasonal variability of the directional wave spectra in the Mediterranean Sea for the 21st century

    Get PDF
    A state-of-the-art regional assessment of future directional wave spectra in the Mediterranean Sea and the projected changes with respect to hindcast is presented. A multi-model EURO-CORDEX regional ensemble of bias-adjusted wave climate projections in eleven locations of the Mediterranean are used for the assessment of future seasonal changes in the directional wave spectra under the high-emission scenario RCP8.5. This analysis allows us to identify climate change effects on the spectral energy of the swell and wind-sea systems and their seasonal variability which cannot be captured with the standard integrated wave parameters, such as significant wave height and mean wave direction. The results show an overall robust decrease in the predominant wave systems, resulting in a likely decrease in the significant wave height that is in agreement with previous studies. However, the results depict a robust increase in other less energetic frequencies and directions leading to a projected behavioral change from unimodal to bimodal/multimodal wave climate in many locations which has strong repercussions on the vulnerability of coastal assets and ports operability

    Sea waves transport of inertial micro-plastics: Mathematical model and applications

    Get PDF
    Plastic pollution in seas and oceans has recently been recognized as one of the most impacting threats for the environment, and the increasing number of scientific studies proves that this is an issue of primary concern. Being able to predict plastic paths and concentrations within the sea is therefore fundamental to properly face this challenge. In the present work, we evaluated the effects of sea waves on inertial micro-plastics dynamics. We hypothesized a stationary input number of particles in a given control volume below the sea surface, solving their trajectories and distributions under a second-order regular wave. We developed an exhaustive group of datasets, spanning the most plausible values for particles densities and diameters and wave characteristics, with a specific focus on the Mediterranean Sea. Results show how the particles inertia significantly affects the total transport of such debris by waves

    Influence of initial conditions on absolute and relative dispersion in semi-enclosed basins

    Get PDF
    Absolute and relative dispersion are fundamental quantities employed in order to assess the mixing strength of a basin. There exists a time scale called Lagrangian Integral Scale associated to absolute dispersion that highlights the occurrence of the transition from a quadratic dependence on time to a linear dependence on time. Such a time scale is commonly adopted as an indicator of the duration needed to lose the influence of the initial conditions. This work aims to show that in a semi-enclosed basin the choice of the formulation in order to calculate the absolute dispersion can lead to different results. Moreover, the influence of initial conditions can persist beyond the Lagrangian Integral Scale. Such an influence can be appreciated by evaluating absolute and relative dispersion recursively by changing the initial conditions. Furthermore, finite-size Lyapunov exponents characterize the different regimes of the basin

    Automatic Seizure Detection in Rats Using Laplacian EEG and Verification with Human Seizure Signals

    Get PDF
    Automated detection of seizures is still a challenging problem. This study presents an approach to detect seizure segments in Laplacian electroencephalography (tEEG) recorded from rats using the tripolar concentric ring electrode (TCRE) configuration. Three features, namely, median absolute deviation, approximate entropy, and maximum singular value were calculated and used as inputs into two different classifiers: support vector machines and adaptive boosting. The relative performance of the extracted features on TCRE tEEG was examined. Results are obtained with an overall accuracy between 84.81 and 96.51%. In addition to using TCRE tEEG data, the seizure detection algorithm was also applied to the recorded EEG signals from Andrzejak et al. database to show the efficiency of the proposed method for seizure detection

    WearLight: Towards a Wearable, Configurable Functional NIR Spectroscopy System for Noninvasive Neuroimaging

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) has emerged as an effective brain monitoring technique to measure the hemodynamic response of the cortical surface. Its wide popularity and adoption in recent time attribute to its portability, ease of use, and flexibility in multimodal studies involving electroencephalography. While fNIRS is still emerging on various fronts including hardware, software, algorithm, and applications, it still requires overcoming several scientific challenges associated with brain monitoring in naturalistic environments where the human participants are allowed to move and required to perform various tasks stimulating brain behaviors. In response to these challenges and demands, we have developed a wearable fNIRS system, WearLight that was built upon an Internet-of-Things embedded architecture for onboard intelligence, configurability, and data transmission. In addition, we have pursued detailed research and comparative analysis on the design of the optodes encapsulating an near-infrared light source and a detector into 3-D printed material. We performed rigorous experimental studies on human participants to test reliability, signal-to-noise ratio, and configurability. Most importantly, we observed that WearLight has a capacity to measure hemodynamic responses in various setups including arterial occlusion on the forearm and frontal lobe brain activity during breathing exercises in a naturalistic environment. Our promising experimental results provide an evidence of preliminary clinical validation of WearLight. This encourages us to move toward intensive studies involving brain monitoring

    Effects of transcranial focal electrical stimulation via tripolar concentric ring electrodes on pentylenetetrazole-induced seizures in rats

    Get PDF
    Purpose: To study the effects of noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCRE) on the electrographic and behavioral activity from pentylenetetrazole (PTZ)-induced seizures in rats. Methods: The TCREs were attached to the rat scalp. PTZ was administered and, after the first myoclonic jerk was observed, TFS was applied to the TFS treated group. The electroencephalogram (EEG) and behavioral activity were recorded and studied. Results: In the case of the TFS treated group, after TFS, there was a significant (p = 0.001) decrease in power compared to the control group in delta, theta, and alpha frequency bands. The number of myoclonic jerks was significantly different (p = 0.002) with median of 22 and 4.5 for the control group and the TFS treated groups, respectively. The duration of myoclonic activity was also significantly different (p = 0.031) with median of 17.56 min for the control group versus 8.63 min for the TFS treated group. At the same time there was no significant difference in seizure onset latency and maximal behavioral seizure activity score between control and TFS treated groups. Conclusions: TFS via TCREs interrupted PTZ-induced seizures and electrographic activity was reduced toward the “baseline.” The significantly reduced electrographic power, number of myoclonic jerks, and duration of myoclonic activity of PTZ-induced seizures suggests that TFS may have an anticonvulsant effect

    Evaluation of HF-radar wave measures in the Gulf of Naples

    Get PDF
    HF-radar systems are commonly employed for detecting the upper sea currents. Nevertheless, the signal of such systems can be further post-processed for characterizing as well the wave characteristics, though this is a recent application whose reliability has not been yet exhaustively investigated. In this work, we evaluate HF-radar measures of significant wave height, wave mean period and incident direction against the outcomes of two numerical models previously validated. The comparison is developed in the Gulf of Naples (hereinafter GoN), taking advantage of three antennas placed in the locations of Castellamare di Stabia, Portici and Sorrento. First, a wave hindcast defined on a regional scale is employed; then, wave data are down-scaled through a local model defined over a finer resolution (local scale). The agreement between the systems is evaluated through statistical error indexes. Results show good consistency, leaving room for deepening the use of radars for wave data collection

    Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test

    Get PDF
    Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development as an alternative/complementary therapy for seizure control. Transcranial focal electrical stimulation has shown efficacy in attenuating penicillin-, pilocarpine-, and pentylenetetrazole-induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. Short- and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. The following independent groups were used: naïve, control (without TFS), and TFS (treated). The naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. Transcranial focal electrical stimulation via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs

    HF Radar Measurements of Surface Waves in the Gulf of Naples (Southeastern Tyrrhenian Sea): Comparison With Hindcast Results at Different Scales

    Get PDF
    HF radar systems wave measurements are evaluated against numerical simulations in the Gulf of Naples (Southeastern Tyrrhenian Sea). Wave measurements are obtained from three CODAR SeaSonde HF radars installed along the coast of the Gulf of Naples. The numerical models employed are WavewatchIII, implemented on a regional scale with a resolution of about 10 km in longitude and latitude in the whole Mediterranean Sea, and SWAN, implemented with a 200 m resolution in the area of interest. Numerical simulations are also validated against experimental data acquired by a buoy installed offshore the Gulf of Naples. The agreement between HF radar measurements and model hindcasts is evaluated through the estimate of statistical error indices for the main wave characteristics (significant wave height, mean period, and mean direction). The consistency between wave parameters retrieved by HF radars and hindcasted by the models opens the way to future integration of the two systems as well as to the utilization of HF radar wave parameters that could be envisaged for data assimilation in wave models
    corecore