192 research outputs found

    RRM1 (ribonucleotide reductase M1)

    Get PDF
    Review on RRM1 (ribonucleotide reductase M1), with data on DNA, on the protein encoded, and where the gene is implicated

    Nucleosomes indicate the in vitro radiosensitivity of irradiated bronchoepithelial and lung cancer cells

    Get PDF
    Nucleosomes, which are typical cell death products, are elevated in the serum of cancer patients and are known to rapidly increase during radiotherapy. As both normal and malignant cells are damaged by irradiation, we investigated to which extent both cell types contribute to the release of nucleosomes. We cultured monolayers of normal bronchoepithelial lung cells (BEAS-2B, n = 18) and epithelial lung cancer cells (EPLC, n = 18), exposed them to various radiation doses (0, 10 and 30 Gy) and observed them for 5 days. Culture medium was changed every 24 h. Subsequently, nucleosomes were determined in the supernatant by the Cell Death Detection-ELISA(plus) ( Roche Diagnostics). Additionally, the cell number was estimated after harvesting the cells in a second preparation. After 5 days, the cell number of BEAS-2B cultures in the irradiated groups (10 Gy: median 0.03 x 10(6) cells/culture, range 0.02-0.08 x 10(6) cells/culture; 30 Gy: median 0.08 x 10(6) cells/culture, range 0.02-0.14 x 10(6) cells/culture) decreased significantly (10 Gy: p = 0.005; 30 Gy p = 0.005; Wilcoxon test) compared to the non-irradiated control group (median 4.81 x 10(6) cells/culture, range 1.50-9.54 x 10(6) cells/culture). Consistently, nucleosomes remained low in the supernatant of nonirradiated BEAS-2B. However, at 10 Gy, BEAS-2B showed a considerably increasing release of nucleosomes, with a maximum at 72 h ( before irradiation: 0.24 x 10(3) arbitrary units, AU, range 0.13-4.09 x 10(3) AU, and after 72 h: 1.94 x 10(3) AU, range 0.11-5.70 x 10(3) AU). At 30 Gy, the release was even stronger, reaching the maximum earlier (at 48 h, 11.09 x 10(3) AU, range 6.89-18.28 x 10(3) AU). In non-irradiated EPLC, nucleosomes constantly increased slightly. At 10 Gy, we observed a considerably higher release of nucleosomes in EPLC, with a maximum at 72 h (before irradiation: 2.79 x 10(3) AU, range 2.42-3.80 x 10(3) AU, and after 72 h: 7.16 x 10(3) AU, range 4.30-16.20 x 10(3) AU), which was more than 3.5 times higher than in BEAS-2B. At 30 Gy, the maximum (6.22 x 10(3) AU, range 5.13-9.71 x 10(3) AU) was observed already after 24 h. These results indicate that normal bronchoepithelial and malignant lung cancer cells contribute to the release of nucleosomes during irradiation in a dose-and time-dependent manner with cancer cells having a stronger impact at low doses. Copyright (C) 2004 S. Karger AG, Basel

    ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

    Get PDF
    Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1

    Decreased expression of haemoglobin beta (HBB) gene in anaplastic thyroid cancer and recovory of its expression inhibits cell growth

    Get PDF
    Anaplastic thyroid cancer (ATC) is one of the most fulminant and foetal diseases in human malignancies. However, the genetic alterations and carcinogenic mechanisms of ATC are still unclear. Recently, we investigated the gene expression profile of 11 anaplastic thyroid cancer cell lines (ACL) and significant decreased expression of haemoglobin beta (HBB) gene in ACL. Haemoglobin beta is located at 11p15.5, where loss of heterozygosity (LOH) was reported in various kinds of cancers, including ATC, and it has been suggested that novel tumour suppressor genes might exist in this region. In order to clarify the meaning of decreased expression of HBB in ATC, the expression status of HBB was investigated with ACL, ATC, papillary thyroid cancer (PTC) and normal human tissues. Haemoglobin beta showed significant decreased expression in ACLs and ATCs; however, in PTC, HBB expressed equal to the normal thyroid gland. In addition, HBB expressed in normal human tissues ubiquitously. To validate the tumour-suppressor function of HBB, cell growth assay was performed. Forced expression of HBB in KTA2 cell, which is a kind of ACL, significantly suppressed KTA2 growth. The mechanism of downregulation of HBB in ATC is still unclear; however, our results suggested the possibility of HBB as a novel tumour-suppressor gene

    Is there a role for the quantification of RRM1 and ERCC1 expression in pancreatic ductal adenocarcinoma?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RRM1 and ERCC1 overexpression has been extensively investigated as potential predictive markers of tumor sensitivity to conventional chemotherapy agents, most thoroughly in lung cancer. However, data in pancreatic cancer are scarce.</p> <p>Methods</p> <p>We investigated the mRNA and protein expression of ERCC1 and RRM1 by RT-PCR and immunohistochemistry (IHC) in formalin-fixed, paraffin-embedded pancreatic ductal carcinoma (PDA) tissues. The primary outcome investigated was the association between RRM1 and ERCC1 expression and overall survival (OS) or disease-free survival (DFS).</p> <p>Results</p> <p>A total of 94 patients with resected PDA were included in this study. Most of them (87%) received gemcitabine based chemotherapy. Data for OS analysis was available in all cases but only 68% had enough information to estimate DFS. IHC analysis revealed information for 99% (93/94) and 100% of the cases for RRM1 and ERCC1 expression respectively. However, PCR data interpretation was possible in only 49 (52%) and 79 (84%) cases respectively. There was no significant association between high or low expression of either RRM1 or ERCC1, detected by IHC and OS (14.4 vs. 19.9 months; <it>P </it>= 0.5 and 17.1 vs. 19.9; <it>P </it>= 0.83 respectively) or PCR and OS (48.0 vs. 24.1 months; <it>P </it>= 0.21 and 22.0 vs. 16.0 months; <it>P </it>= 0.39 respectively). Similar results were obtained for DFS.</p> <p>Conclusions</p> <p>RRM1 and ERCC1 expression does not seem to have a clear predictive or prognostic value in pancreatic cancer. Our data raise some questions regarding the real clinical and practical significance of analyzing these molecules as predictors of outcomes.</p

    Spontaneous changes in intermediate filament protein expression patterns in lung cancer cell lines

    Get PDF
    The usefulness of cell lines in the study and prediction of the clinical behaviour of lung cancer is still a matter of debate. However, lung tumour cell cultures have been of value in investigations concerning molecular and cell biological aspects of these neoplasms. Especially in the examination of characteristics specific for the main types of differentiation (squamous cell carcinoma, adenocarcinoma, small cell carcinoma), in vitro studies have been most important. Twenty eight lung cancer cell lines were cultured for up to four years, and were examined at regular intervals for their intermediate filament protein (IFP) expression patterns using a panel of cytokeratin (CK) and neurofilament (NF) antibodies. These studies showed that the classic type of small cell lung cancer (SCLC) cell lines contain CKs 8, 18, and occasionally CK 19, while the variant-type SCLC cell lines generally express no CKs but can contain NFs. Non-SCLC cell lines, such as squamous cell carcinoma and adenocarcinoma cell lines, contain CKs 7 (in most cases), 8, 18 and 19. In one variant SCLC cell line and in one adenocarcinoma cell line CKs 4, 10 and 13, characteristic of squamous cell differentiation, were found. Although most cell lines have remained stable with respect to growth characteristics and IFP expression patterns, five lung cancer cultures exhibited a transition from one cell type to another, paralleled by changes in IFP expression. Progressions from classic to variant SCLC cell lines have been observed, next to conversions from variant SCLC to cell lines re-expressing cytokeratins. In some cases this resulted in a coexpression of CKs and NFs within a cell line and even within individual tumour cells. These results strongly support the earlier finding that CK expression in SCLC cell lines is a reliable marker for the classic type of differentiation, while the absence of CKs and the presence of NFs marks the variant type of differentiation. Our results are discussed in view of previous histological findings

    Transformation of human bronchial epithelial cells alters responsiveness to inflammatory cytokines

    Get PDF
    BACKGROUND: Inflammation is commonly associated with lung tumors. Since inflammatory mediators, including members of the interleukin-6 (IL-6) cytokine family, suppress proliferation of normal epithelial cells, we hypothesized that epithelial cells must develop mechanisms to evade this inhibition during the tumorigenesis. This study compared the cytokine responses of normal epithelial cells to that of premalignant cells. METHODS: Short-term primary cultures of epithelial cells were established from bronchial brushings. Paired sets of brushings were obtained from areas of normal bronchial epithelium and from areas of metaplastic or dysplastic epithelium, or areas of frank endobronchial carcinoma. In 43 paired cultures, the signalling through the signal transducer and activator of transcription (STAT) and extracellular regulated kinase (ERK) pathways and growth regulation by IL-6, leukemia inhibitory factor (LIF), oncostatin M (OSM), interferon-γ (IFNγ) or epidermal growth factor (EGF) were determined. Inducible expression and function of the leukemia inhibitory factor receptor was assessed by treatment with the histone deacetylase inhibitor depsipeptide. RESULTS: Normal epithelial cells respond strongly to OSM, IFNγ and EGF, and respond moderately to IL-6, and do not exhibit a detectable response to LIF. In preneoplastic cells, the aberrant signaling that was detected most frequently was an elevated activation of ERK, a reduced or increased IL-6 and EGF response, and an increased LIF response. Some of these changes in preneoplastic cell signaling approach those observed in established lung cancer cell lines. Epigenetic control of LIF receptor expression by histone acetylation can account for the gain of LIF responsiveness. OSM and macrophage-derived cytokines suppressed proliferation of normal epithelial cells, but reduced inhibition or even stimulated proliferation was noted for preneoplastic cells. These alterations likely contribute to the supporting effects that inflammation has on lung tumor progression. CONCLUSION: This study indicates that during the earliest stage of premalignant transformation, a modified response to cytokines and EGF is evident. Some of the altered cytokine responses in primary premalignant cells are comparable to those seen in established lung cancer cell lines

    Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine

    Get PDF
    Ribonucleotide reductase subunits M1 (RRM1) and M2 (RRM2) are involved in the metabolism of gemcitabine (2′,2′-difluorodeoxycytidine), which is used for the treatment of nonsmall cell lung cancer. The mRNA expression of RRM1 and RRM2 in tumours from lung adenocarcinoma patients treated with docetaxel/gemcitabine was assessed and the results correlated with clinical outcome. RMM1 and RMM2 mRNA levels were determined by quantitative real-time PCR in primary tumours of previously untreated patients with advanced lung adenocarcinoma who were subsequently treated with docetaxel/gemcitabine. Amplification was successful in 42 (79%) of 53 enrolled patients. Low levels of RRM2 mRNA were associated with response to treatment (P< 0.001). Patients with the lowest expression levels of RRM1 had a significantly longer time to progression (P=0.044) and overall survival (P=0.02) than patients with the highest levels. Patients with low levels of both RRM1 and RRM2 had a significantly higher response rate (60 vs 14.2%; P=0.049), time to progression (9.9 vs 2.3 months; P=0.003) and overall survival (15.4 vs 3.6; P=0.031) than patients with high levels of both RRM1 and RRM2. Ribonucleotide reductase subunit M1 and RRM2 mRNA expression in lung adenocarcinoma tumours is associated with clinical outcome to docetaxel/gemcitabine. Prospective studies are warranted to evaluate the role of these markers in tailoring chemotherapy
    corecore