17 research outputs found

    Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization

    Full text link
    We present a straightforward and reliable continuous method for computing the full or a partial Lyapunov spectrum associated with a dynamical system specified by a set of differential equations. We do this by introducing a stability parameter beta>0 and augmenting the dynamical system with an orthonormal k-dimensional frame and a Lyapunov vector such that the frame is continuously Gram-Schmidt orthonormalized and at most linear growth of the dynamical variables is involved. We prove that the method is strongly stable when beta > -lambda_k where lambda_k is the k'th Lyapunov exponent in descending order and we show through examples how the method is implemented. It extends many previous results.Comment: 14 pages, 10 PS figures, ioplppt.sty, iopl12.sty, epsfig.sty 44 k

    Chaos and Preheating

    Get PDF
    We show evidence for a relationship between chaos and parametric resonance both in a classical system and in the semiclassical process of particle creation. We apply our considerations in a toy model for preheating after inflation.Comment: 7 pages, 9 figures; uses epsfig and revtex v3.1. Matches version accepted for publication in Phys. Rev.

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure

    Chaos and the continuum limit in nonneutral plasmas and charged particle beams

    Get PDF
    This paper examines discreteness effects in nearly collisionless N-body systems of charged particles interacting via an unscreened r^-2 force, allowing for bulk potentials admitting both regular and chaotic orbits. Both for ensembles and individual orbits, as N increases there is a smooth convergence towards a continuum limit. Discreteness effects are well modeled by Gaussian white noise with relaxation time t_R = const * (N/log L)t_D, with L the Coulomb logarithm and t_D the dynamical time scale. Discreteness effects accelerate emittance growth for initially localised clumps. However, even allowing for discreteness effects one can distinguish between orbits which, in the continuum limit, feel a regular potential, so that emittance grows as a power law in time, and chaotic orbits, where emittance grows exponentially. For sufficiently large N, one can distinguish two different `kinds' of chaos. Short range microchaos, associated with close encounters between charges, is a generic feature, yielding large positive Lyapunov exponents X_N which do not decrease with increasing N even if the bulk potential is integrable. Alternatively, there is the possibility of larger scale macrochaos, characterised by smaller Lyapunov exponents X_S, which is present only if the bulk potential is chaotic. Conventional computations of Lyapunov exponents probe X_N, leading to the oxymoronic conclusion that N-body orbits which look nearly regular and have sharply peaked Fourier spectra are `very chaotic.' However, the `range' of the microchaos, set by the typical interparticle spacing, decreases as N increases, so that, for large N, this microchaos, albeit very strong, is largely irrelevant macroscopically. A more careful numerical analysis allows one to estimate both X_N and X_S.Comment: 13 pages plus 17 figure

    Chaos and Noise in Galactic Potentials

    Get PDF
    ABBREVIATED ABSTRACT: This paper summarises an investigation of the effects of weak friction and noise in time-independent, nonintegrable potentials which admit both regular and stochastic orbits. The aim is to understand the qualitative effects of internal and external irregularities associated, e.g., with discreteness effects or couplings to an external environment, which stars in any real galaxy must experience. The two principal conclusions are: (1) These irregularities can be important on time scales much shorter than the natural relaxation time scale t_R associated with the friction and noise. For stochastic orbits friction and noise induce an average exponential divergence from the unperturbed Hamiltonian trajectory at a rate set by the value of the local Lyapunov exponent. Even weak noise can make a pointwise interpretation of orbits suspect already on time scales much shorter than t_R. (2) The friction and noise can also have significant effects on the statistical properties of ensembles of stochastic orbits, these also occurring on time scales much shorter than t_R. Potential implications for galactic dynamics are discussed, including the problem of shadowing.Comment: 45 pages, uuencoded PostScript (figures included), LA-UR-94-282

    Statistical Mechanics and the Physics of the Many-Particle Model Systems

    Full text link
    The development of methods of quantum statistical mechanics is considered in light of their applications to quantum solid-state theory. We discuss fundamental problems of the physics of magnetic materials and the methods of the quantum theory of magnetism, including the method of two-time temperature Green's functions, which is widely used in various physical problems of many-particle systems with interaction. Quantum cooperative effects and quasiparticle dynamics in the basic microscopic models of quantum theory of magnetism: the Heisenberg model, the Hubbard model, the Anderson Model, and the spin-fermion model are considered in the framework of novel self-consistent-field approximation. We present a comparative analysis of these models; in particular, we compare their applicability for description of complex magnetic materials. The concepts of broken symmetry, quantum protectorate, and quasiaverages are analyzed in the context of quantum theory of magnetism and theory of superconductivity. The notion of broken symmetry is presented within the nonequilibrium statistical operator approach developed by D.N. Zubarev. In the framework of the latter approach we discuss the derivation of kinetic equations for a system in a thermal bath. Finally, the results of investigation of the dynamic behavior of a particle in an environment, taking into account dissipative effects, are presented.Comment: 77 pages, 1 figure, Refs.37
    corecore