355 research outputs found

    Simultaneous Optical Model Analyses of Elastic Scattering, Breakup, and Fusion Cross Section Data for the 6^{6}He + 209^{209}Bi System at Near-Coulomb-Barrier Energies

    Full text link
    Based on an approach recently proposed by us, simultaneous χ2\chi^{2}-analyses are performed for elastic scattering, direct reaction (DR) and fusion cross sections data for the 6^{6}He+209^{209}Bi system at near-Coulomb-barrier energies to determine the parameters of the polarization potential consisting of DR and fusion parts. We show that the data are well reproduced by the resultant potential, which also satisfies the proper dispersion relation. A discussion is given of the nature of the threshold anomaly seen in the potential

    Transfer/Breakup Modes in the 6He+209Bi Reaction Near and Below the Coulomb Barrier

    Full text link
    Reaction products from the interaction of 6He with 209Bi have been measured at energies near the Coulomb barrier. A 4He group of remarkable intensity, which dominates the total reaction cross section, has been observed. The angular distribution of the group suggests that it results primarily from a direct nuclear process. It is likely that this transfer/breakup channel is the doorway state that accounts for the previously observed large sub-barrier fusion enhancement in this system.Comment: 4 pages; 3 figure

    Protein dynamics with off-lattice Monte Carlo moves

    Full text link
    A Monte Carlo method for dynamics simulation of all-atom protein models is introduced, to reach long times not accessible to conventional molecular dynamics. The considered degrees of freedom are the dihedrals at Cα_\alpha-atoms. Two Monte Carlo moves are used: single rotations about torsion axes, and cooperative rotations in windows of amide planes, changing the conformation globally and locally, respectively. For local moves Jacobians are used to obtain an unbiased distribution of dihedrals. A molecular dynamics energy function adapted to the protein model is employed. A polypeptide is folded into native-like structures by local but not by global moves.Comment: 10 pages, 4 Postscript figures, uses epsf.sty and a4.sty; scheduled tentatively for Phys.Rev.E issue of 1 March 199

    E2 properties of nuclei far from stability and the proton-halo problem of 8B

    Full text link
    E2 properties of A=6--10 nuclei, including those of nuclei far from stability, are studied by a (0+2)ω(0+2)\hbar\omega shell-model calculation which includes E2 core-polarization effects explicitly. The quadrupole moments and the E2 transition strengths in A=6--10 nuclei are described quite well by the present calculation. This result indicates that the relatively large value of the quadrupole moment of 8^8B can be understood without introducing the proton-halo in 8^8B. An interesting effect of the 2ω2\hbar\omega core-polarization is found for effective charges used in the 0ω0\hbar\omega shell model; although isoscalar effective-charges are almost constant as a function of nucleus, appreciable variations are needed for isovector effective-charges which play important roles in nuclei with high isospin-values.Comment: (LaTeX, 23 pages

    Calculations of three-body observables in ^8B breakup

    Get PDF
    We discuss calculations of three-body observables for the breakup of ^8B on a ^{58}Ni target at low energy using the coupled discretised continuum channels approach. Calculations of both the angular distribution of the ^7Be fragments and their energy distributions are compared with those measured at several laboratory angles. In these observables there is interference between the breakup amplitudes from different spin-parity excitations of the projectile. The resulting angle and the energy distributions reveal the importance of the higher-order continuum state couplings for an understanding of the measurements.Comment: 22 pages (postscript), accepted in Phys. Rev.

    Investigation of the 19Na via resonance elastic scattering

    Full text link
    The structure of the unbound proton-rich isotope 19Na was studied in resonance elastic scattering of a radioactive 18Ne beam on a proton target using the thick-target inverse-kinematics method. The experiment covered excitation energy range from 0.5 to 2.7 MeV in c.m.s. Only one state of 19Na (the second excited state) was observed. A combined R-matrix and potential-model analysis was performed. The spin and parity assignment of this second excited state was confirmed to be 1/2+. We showthat the position of the 1/2+ state significantly affects the reaction rate through that state but the total reaction rate remains unchanged since the 18Ne(2p,gamma) proceeds mostly via the ground and first excited states in 19Na at stellar temperatures.Comment: 13 pages, 5 figure

    Reactions of a Be-10 beam on proton and deuteron targets

    Get PDF
    The extraction of detailed nuclear structure information from transfer reactions requires reliable, well-normalized data as well as optical potentials and a theoretical framework demonstrated to work well in the relevant mass and beam energy ranges. It is rare that the theoretical ingredients can be tested well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has been examined through the 10Be(d,p) reaction in inverse kinematics at equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of Be-10 on protons was used to select optical potentials for the analysis of the transfer data. Additionally, data from the elastic and inelastic scattering of Be-10 on deuterons was used to fit optical potentials at the four measured energies. Transfers to the two bound states and the first resonance in Be-11 were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA). Consistent values of the spectroscopic factor of both the ground and first excited states were extracted from the four measurements, with average values of 0.71(5) and 0.62(4) respectively. The calculations for transfer to the first resonance were found to be sensitive to the size of the energy bin used and therefore could not be used to extract a spectroscopic factor.Comment: 16 Pages, 10 figure

    Breakup reaction models for two- and three-cluster projectiles

    Full text link
    Breakup reactions are one of the main tools for the study of exotic nuclei, and in particular of their continuum. In order to get valuable information from measurements, a precise reaction model coupled to a fair description of the projectile is needed. We assume that the projectile initially possesses a cluster structure, which is revealed by the dissociation process. This structure is described by a few-body Hamiltonian involving effective forces between the clusters. Within this assumption, we review various reaction models. In semiclassical models, the projectile-target relative motion is described by a classical trajectory and the reaction properties are deduced by solving a time-dependent Schroedinger equation. We then describe the principle and variants of the eikonal approximation: the dynamical eikonal approximation, the standard eikonal approximation, and a corrected version avoiding Coulomb divergence. Finally, we present the continuum-discretized coupled-channel method (CDCC), in which the Schroedinger equation is solved with the projectile continuum approximated by square-integrable states. These models are first illustrated by applications to two-cluster projectiles for studies of nuclei far from stability and of reactions useful in astrophysics. Recent extensions to three-cluster projectiles, like two-neutron halo nuclei, are then presented and discussed. We end this review with some views of the future in breakup-reaction theory.Comment: Will constitute a chapter of "Clusters in Nuclei - Vol.2." to be published as a volume of "Lecture Notes in Physics" (Springer
    corecore