43,214 research outputs found
Tadpole renormalization and relativistic corrections in lattice NRQCD
We make a comparison of two tadpole renormalization schemes in the context of
the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and
NRQCD actions are analyzed using the mean-link in Landau gauge, and
using the fourth root of the average plaquette . Simulations are done
for , , and systems. The hyperfine splittings are
computed both at leading and at next-to-leading order in the relativistic
expansion. Results are obtained at lattice spacings in the range of about
0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole
renormalization using . This includes much better scaling behavior of
the hyperfine splittings in the three quarkonium systems when is
used. We also find that relativistic corrections to the spin splittings are
smaller when is used, particularly for the and
systems. We also see signs of a breakdown in the NRQCD expansion when the bare
quark mass falls below about one in lattice units. Simulations with
also appear to be better behaved in this context: the bare quark masses turn
out to be larger when is used, compared to when is used on
lattices with comparable spacings. These results also demonstrate the need to
go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and
references
Microwave-induced resistance oscillations and zero-resistance states in 2D electron systems with two occupied subbands
We report on theoretical studies of recently discovered microwave-induced
resistance oscillations and zero resistance states in Hall bars with two
occupied subbands. In the same results, resistance presents a peculiar shape
which appears to have a built-in interference effect not observed before. We
apply the microwave-driven electron orbit model, which implies a
radiation-driven oscillation of the two-dimensional electron system. Thus, we
calculate different intra and inter-subband electron scattering rates and times
that are revealing as different microwave-driven oscillations frequencies for
the two electronic subbands. Through scattering, these subband-dependent
oscillation motions interfere giving rise to a striking resistance profile. We
also study the dependence of irradiated magnetoresistance with power and
temperature. Calculated results are in good agreement with experiments.Comment: 7 pages, 6 figure
sl(N) Onsager's Algebra and Integrability
We define an analog of Onsager's Algebra through a finite set of
relations that generalize the Dolan Grady defining relations for the original
Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be
isomorphic to a fixed point subalgebra of Loop Algebra with respect
to a certain involution. As the consequence of the generalized Dolan Grady
relations a Hamiltonian linear in the generators of Onsager's Algebra
is shown to posses an infinite number of mutually commuting integrals of
motion
Resuscitation-promoting factors possess a lysozyme-like domain
The novel bacterial cytokine family – resuscitation-promoting factors (Rpfs) – share a conserved domain of uncharacterized function. Predicting the structure of this domain suggests that Rpfs possess a lysozyme-like domain. The model highlights the good conservation of residues involved in catalysis and substrate binding. A lysozyme-like function makes sense for this domain in the light of experimental characterization of the biological function of Rpfs
Environment Induced Entanglement in Markovian Dissipative Dynamics
We show that two, non interacting 2-level systems, immersed in a common bath,
can become mutually entangled when evolving according to a Markovian,
completely positive reduced dynamics.Comment: 4 pages, LaTex, no figures, added reference
The heavy quark's self energy from moving NRQCD on the lattice
We present a calculation of the heavy quark's self energy in moving NRQCD to
one-loop in perturbation theory. Results for the energy shift and external
momentum renormalisation are discussed and compared with non-perturbative
results. We show that the momentum renormalisation is small, which is the
result of a remnant of re-parameterisation invariance on the lattice.Comment: Talk given at Lattice2004(heavy), Fermilab, June 21-26, 200
Quarkonium spin structure in lattice NRQCD
Numerical simulations of the quarkonium spin splittings are done in the
framework of lattice nonrelativistic quantum chromodynamics (NRQCD). At leading
order in the velocity expansion the spin splittings are of , where
is the renormalized quark mass and is the mean squared quark
velocity. A systematic analysis is done of all next-to-leading order
corrections. This includes the addition of relativistic
interactions, and the removal of discretization errors in the
leading-order interactions. Simulations are done for both S- and P-wave mesons,
with a variety of heavy quark actions and over a wide range of lattice
spacings. Two prescriptions for the tadpole improvement of the action are also
studied in detail: one using the measured value of the average plaquette, the
other using the mean link measured in Landau gauge. Next-to-leading order
interactions result in a very large reduction in the charmonium splittings,
down by about 60% from their values at leading order. There are further
indications that the velocity expansion may be poorly convergent for
charmonium. Prelimary results show a small correction to the hyperfine
splitting in the Upsilon system.Comment: 16 pages, REVTEX v3.1, 5 postscript figures include
Υ and Υ′ leptonic widths, abμ, and mb from full lattice QCD
We determine the decay rate to leptons of the ground-state ϒ meson and its first radial excitation in lattice
QCD for the first time. We use radiatively improved nonrelativistic QCD for the b quarks and include u, d,
s and c quarks in the sea with u=d masses down to their physical values. We find Γðϒ → eþe−Þ ¼
1.19ð11Þ keV and Γðϒ0 → eþe−Þ ¼ 0.69ð9Þ keV, both in good agreement with experimental results. The
decay constants we obtain are included in a summary plot of meson decay constants from lattice QCD
given in the Conclusions. We also test time moments of the vector current-current correlator against values
determined from the b-quark contribution to σðeþe− → hadronsÞ and calculate the b-quark piece of the
hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon,
ab
μ ¼ 0.271ð37Þ × 10−10. Finally we determine the b-quark mass, obtaining in the MS scheme, ¯
m¯ bðm¯ b; nf ¼ 5Þ ¼ 4.196ð23Þ GeV, the most accurate result from lattice QCD to date
Charmonium properties from lattice QCD + QED: hyperfine splitting, leptonic width, charm quark mass and
We have performed the first lattice QCD computations of the
properties (masses and decay constants) of ground-state charmonium mesons. Our
calculation uses the HISQ action to generate quark-line connected two-point
correlation functions on MILC gluon field configurations that include
quark masses going down to the physical point, tuning the quark mass from
and including the effect of the quark's electric charge
through quenched QED. We obtain (connected) =
120.3(1.1) MeV and interpret the difference with experiment as the impact on
of its decay to gluons, missing from the lattice calculation. This
allows us to determine =+7.3(1.2) MeV,
giving its value for the first time. Our result of 0.4104(17)
GeV, gives =5.637(49) keV, in agreement
with, but now more accurate than experiment. At the same time we have improved
the determination of the quark mass, including the impact of quenched QED
to give = 0.9841(51) GeV. We have also used
the time-moments of the vector charmonium current-current correlators to
improve the lattice QCD result for the quark HVP contribution to the
anomalous magnetic moment of the muon. We obtain , which is 2.5 higher than the value derived using moments
extracted from some sets of experimental data on . This value for includes our determination of
the effect of QED on this quantity, .Comment: Added extra discussion on QED setup, some new results to study the
effects of strong isospin breaking in the sea (including new Fig. 1) and a
fit stability plot for the hyperfine splitting (new Fig. 7). Version accepted
for publication in PR
- …
