37,506 research outputs found
Quarkonium spin structure in lattice NRQCD
Numerical simulations of the quarkonium spin splittings are done in the
framework of lattice nonrelativistic quantum chromodynamics (NRQCD). At leading
order in the velocity expansion the spin splittings are of , where
is the renormalized quark mass and is the mean squared quark
velocity. A systematic analysis is done of all next-to-leading order
corrections. This includes the addition of relativistic
interactions, and the removal of discretization errors in the
leading-order interactions. Simulations are done for both S- and P-wave mesons,
with a variety of heavy quark actions and over a wide range of lattice
spacings. Two prescriptions for the tadpole improvement of the action are also
studied in detail: one using the measured value of the average plaquette, the
other using the mean link measured in Landau gauge. Next-to-leading order
interactions result in a very large reduction in the charmonium splittings,
down by about 60% from their values at leading order. There are further
indications that the velocity expansion may be poorly convergent for
charmonium. Prelimary results show a small correction to the hyperfine
splitting in the Upsilon system.Comment: 16 pages, REVTEX v3.1, 5 postscript figures include
Tadpole renormalization and relativistic corrections in lattice NRQCD
We make a comparison of two tadpole renormalization schemes in the context of
the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and
NRQCD actions are analyzed using the mean-link in Landau gauge, and
using the fourth root of the average plaquette . Simulations are done
for , , and systems. The hyperfine splittings are
computed both at leading and at next-to-leading order in the relativistic
expansion. Results are obtained at lattice spacings in the range of about
0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole
renormalization using . This includes much better scaling behavior of
the hyperfine splittings in the three quarkonium systems when is
used. We also find that relativistic corrections to the spin splittings are
smaller when is used, particularly for the and
systems. We also see signs of a breakdown in the NRQCD expansion when the bare
quark mass falls below about one in lattice units. Simulations with
also appear to be better behaved in this context: the bare quark masses turn
out to be larger when is used, compared to when is used on
lattices with comparable spacings. These results also demonstrate the need to
go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and
references
Microwave-induced resistance oscillations and zero-resistance states in 2D electron systems with two occupied subbands
We report on theoretical studies of recently discovered microwave-induced
resistance oscillations and zero resistance states in Hall bars with two
occupied subbands. In the same results, resistance presents a peculiar shape
which appears to have a built-in interference effect not observed before. We
apply the microwave-driven electron orbit model, which implies a
radiation-driven oscillation of the two-dimensional electron system. Thus, we
calculate different intra and inter-subband electron scattering rates and times
that are revealing as different microwave-driven oscillations frequencies for
the two electronic subbands. Through scattering, these subband-dependent
oscillation motions interfere giving rise to a striking resistance profile. We
also study the dependence of irradiated magnetoresistance with power and
temperature. Calculated results are in good agreement with experiments.Comment: 7 pages, 6 figure
sl(N) Onsager's Algebra and Integrability
We define an analog of Onsager's Algebra through a finite set of
relations that generalize the Dolan Grady defining relations for the original
Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be
isomorphic to a fixed point subalgebra of Loop Algebra with respect
to a certain involution. As the consequence of the generalized Dolan Grady
relations a Hamiltonian linear in the generators of Onsager's Algebra
is shown to posses an infinite number of mutually commuting integrals of
motion
Environment Induced Entanglement in Markovian Dissipative Dynamics
We show that two, non interacting 2-level systems, immersed in a common bath,
can become mutually entangled when evolving according to a Markovian,
completely positive reduced dynamics.Comment: 4 pages, LaTex, no figures, added reference
Resuscitation-promoting factors possess a lysozyme-like domain
The novel bacterial cytokine family – resuscitation-promoting factors (Rpfs) – share a conserved domain of uncharacterized function. Predicting the structure of this domain suggests that Rpfs possess a lysozyme-like domain. The model highlights the good conservation of residues involved in catalysis and substrate binding. A lysozyme-like function makes sense for this domain in the light of experimental characterization of the biological function of Rpfs
The Heavy-Light Spectrum from Lattice NRQCD
We present a lattice investigation of heavy-light mesons in the quenched
approximation, using non-relativistic QCD for the heavy quark and a clover
improved Wilson formulation for the light quark. A comprehensive calculation of
the heavy-light spectrum has been performed for various heavy quark masses
around the . Our results for the splitting agree well with the
experimental value. We find the splitting to be compatible with
experiment, albeit with large error bars. Our splitting is slightly
low, which could be explained as an effect of quenching. For the first time, we
are able to estimate the mass of states at the and compare them with
experiment.Comment: 24 pages, latex, 10 figures in uuencoded compressed postscrip
The heavy quark's self energy from moving NRQCD on the lattice
We present a calculation of the heavy quark's self energy in moving NRQCD to
one-loop in perturbation theory. Results for the energy shift and external
momentum renormalisation are discussed and compared with non-perturbative
results. We show that the momentum renormalisation is small, which is the
result of a remnant of re-parameterisation invariance on the lattice.Comment: Talk given at Lattice2004(heavy), Fermilab, June 21-26, 200
Precision Charmonium Spectroscopy From Lattice QCD
We present results for Charmonium spectroscopy using Non-Relativistic QCD
(NRQCD). For the NRQCD action the leading order spin-dependent and next to
leading order spin-independent interactions have been included with
tadpole-improved coefficients. We use multi-exponential fits to multiple
correlation functions to extract ground and excited states. Splittings
between the lowest , and states are given and we have accurate
values for the state hyperfine splitting and the fine structure.
Agreement with experiment is good - the remaining systematic errors are
discussed.Comment: 23 pages uuencoded latex file. Contains figures in late
Quantum Flux from a Moving Spherical Mirror
We calculate the flux from a spherical mirror which is expanding or
contracting with nearly uniform acceleration. We find that the flux at an
exterior point (which could in principle be a functional of the mirror's past
history) is actually found to be a local function, depending on the first and
second time derivatives of acceleration at the retarded time.Comment: 13 pages, 2 figures, RevTex, submitted to Phys. Rev.
- …