35 research outputs found

    The mystery of the cerebellum: clues from experimental and clinical observations

    Get PDF
    Abstract The cerebellum has a striking homogeneous cytoarchitecture and participates in both motor and non-motor domains. Indeed, a wealth of evidence from neuroanatomical, electrophysiological, neuroimaging and clinical studies has substantially modified our traditional view on the cerebellum as a sole calibrator of sensorimotor functions. Despite the major advances of the last four decades of cerebellar research, outstanding questions remain regarding the mechanisms and functions of the cerebellar circuitry. We discuss major clues from both experimental and clinical studies, with a focus on rodent models in fear behaviour, on the role of the cerebellum in motor control, on cerebellar contributions to timing and our appraisal of the pathogenesis of cerebellar tremor. The cerebellum occupies a central position to optimize behaviour, motor control, timing procedures and to prevent body oscillations. More than ever, the cerebellum is now considered as a major actor on the scene of disorders affecting the CNS, extending from motor disorders to cognitive and affective disorders. However, the respective roles of the mossy fibres, the climbing fibres, cerebellar cortex and cerebellar nuclei remains unknown or partially known at best in most cases. Research is now moving towards a better definition of the roles of cerebellar modules and microzones. This will impact on the management of cerebellar disorders

    CTC1 Mutations in a patient with dyskeratosis congenita

    No full text
    Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome caused by mutations in seven genes involved in telomere biology, with approximately 50% of cases remaining genetically uncharacterized. We report a patient with classic DC carrying a compound heterozygous mutation in the CTC1 (conserved telomere maintenance component 1) gene, which has recently implicated in the pleiotropic syndrome Coats plus. This report confirms a molecular link between DC and Coats plus and expands the genotype-phenotype complexity observed in telomere-related genetic disorders. Pediatr Blood Cancer 2012;59:311-314. (c) 2012 Wiley Periodicals, Inc
    corecore