29 research outputs found

    Abnormalities of Dopamine D Receptor Signaling in the Diseased Brain

    No full text
    Dopamine D 3 receptors (D 3 R) modulate neuronal activity in several brain regions including cortex, striatum, cerebellum, and hippocampus. A growing body of evidence suggests that aberrant D 3 R signaling contributes to multiple brain diseases, such as Parkinson’s disease, essential tremor, schizophrenia, and addiction. In line with these findings, D 3 R has emerged as a potential target in the treatment of neurological disorders. However, the mechanisms underlying neuronal D 3 R signaling are poorly understood, either in healthy or diseased brain. Here, I review the molecular mechanisms involved in D 3 R signaling via monomeric D 3 R and heteromeric receptor complexes (e.g., D 3 R-D 1 R, D 3 R-D 2 R, D 3 R-A 2a R, and D 3 R-D 3 nf). I focus on D 3 R signaling pathways that, according to recent reports, contribute to pathological brain states. In particular, I describe evidence on both quantitative (e.g., increased number or affinity) and qualitative (e.g., switched signaling) changes in D 3 R that has been associated with brain dysfunction. I conclude with a description of basic mechanisms that modulate D 3 R signaling such as desensitization, as disruption of these mechanisms may underlie pathological changes in D 3 R signaling. Because several lines of evidence support the idea that imbalances in D 3 R signaling alter neural function, a better understanding of downstream D 3 R pathways is likely to reveal novel therapeutic strategies toward dopamine-related brain disorders

    On the road towards the global analysis of human synapses

    No full text
    Synapses are essential units for the flow of information in the brain. Over the last 70 years, synapses have been widely studied in multiple animal models including worms, fruit flies, and rodents. In comparison, the study of human synapses has evolved significantly slower, mainly because of technical limitations. However, three novel methods allowing the analysis of molecular, morphological, and functional properties of human synapses may expand our knowledge of the human brain. Here, we briefly describe these methods, and evaluate how the information provided by each unique approach may contribute to the functional and anatomical analysis of the synaptic component of human brain circuitries. In particular, using tissue from cryopreserved human brains, synaptic plasticity can be studied in isolated synaptosomes by fluorescence analysis of single-synapse long-term potentiation (FASS-LTP), and subpopulations of synapses can be thoroughly assessed in the ribbons of brain tissue by array tomography (AT). Currently, it is also possible to quantify synaptic density in the living human brain by positron emission tomography (PET), using a novel synaptic radio-ligand. Overall, data provided by FASS-LTP, AT, and PET may significantly contribute to the global understanding of synaptic structure and function in both healthy and diseased human brains, thus directly impacting translational research

    IL-1β suppresses cLTP-induced surface expression of GluA1 and actin polymerization via ceramide-mediated Src activation

    Get PDF
    Abstract Background Brain inflammation including increases in inflammatory cytokines such as IL-1β is widely believed to contribute to the pathophysiology of Alzheimer’s disease. Although IL-1β-induced impairments in long-term potentiation (LTP) in acute hippocampal slices and memory functions in vivo have been well documented, the neuron-specific molecular mechanisms of IL-1β-mediated impairments of LTP and memory remain unclear. Methods This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on chemical LTP (cLTP)-induced structural plasticity and signaling. Results We found that IL-1β reduces both the surface expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 and the spine growth following cLTP. These effects of IL-1β were mediated by impairing actin polymerization during cLTP, as IL-1β decreased the cLTP-induced formation of F-actin, and the effect of IL-1β on cLTP-induced surface expression of GluA1 can be mimicked by latrunculin, a toxin that disrupts dynamics of actin filaments, and can be prevented by jasplakinolide, a cell-permeable peptide that stabilizes F-actin. Moreover, live-cell imaging demonstrated that IL-1β decreased the stability of the actin cytoskeleton in spines, which is required for LTP consolidation. We further examined the role of sphingolipid signaling in the IL-1β-mediated impairment of spine plasticity and found that both the neutral sphingomyelinase inhibitor GW4869 and the inhibitor of Src kinase PP2 attenuated the IL-1β-mediated suppression of cLTP-induced surface expression of GluA1 and actin polymerization. Conclusions These findings support a mechanism by which IL-1β, via the sphingomyelinase/ceramide/Src pathway, impairs structural spine remodeling essential for LTP consolidation and memory
    corecore