21,766 research outputs found

    Adsorption of Self-Assembled Rigid Rods on Two-Dimensional Lattices

    Get PDF
    Monte Carlo (MC) simulations have been carried out to study the adsorption on square and triangular lattices of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with a discrete number of allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The process has been monitored by following the behavior of the adsorption isotherms for different values of lateral interaction energy/temperature. The numerical data were compared with mean-field analytical predictions and exact functions for noninteracting and 1D systems. The obtained results revealed the existence of three adsorption regimes in temperature. (1) At high temperatures, above the critical one characterizing the IN transition at full coverage Tc(\theta=1), the particles are distributed at random on the surface and the adlayer behaves as a noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers adsorb forming chains over almost the entire range of coverage, and the adsorption process behaves as a 1D problem. (3) In the intermediate regime, the system exhibits a mixed regime and the filling of the lattice proceeds according to two different processes. In the first stage, the monomers adsorb isotropically on the lattice until the IN transition occurs in the system and, from this point, particles adsorb forming chains so that the adlayer behaves as a 1D fluid. The two adsorption processes are present in the adsorption isotherms, and a marked singularity can be observed that separates both regimes. Thus, the adsorption isotherms appear as sensitive quantities with respect to the IN phase transition, allowing us (i) to reproduce the phase diagram of the system for square lattices and (ii) to obtain an accurate determination of the phase diagram for triangular lattices.Comment: Langmuir, 201

    Vortex states in superconductors with strong Pauli-paramagnetic effect

    Full text link
    Using the quasiclassical theory, we analyze the vortex structure of strong-paramagnetic superconductors.There, induced paramagnetic moments are accumulated exclusively around the vortex core. We quantitatively evaluate the significant paramagnetic effect in the H-dependence of various quantities, such as low temperature specific heat, Knight shift, magnetization and the flux line lattice (FLL) form factor. The anomalous H-dependence of the FLL form factor observed by the small angle neutron scattering in CeCoIn_5 is attributable to the large paramagnetic contribution.Comment: 7 pages, 5 figure

    Search for the Higgs Boson H20H_2^0 at LHC in 3-3-1 Model

    Full text link
    We present an analysis of production and signature of neutral Higgs boson (H20H_{2}^{0}) on the version of the 3-3-1 model containing heavy leptons at the Large Hadron Collider. We studied the possibility to identify it using the respective branching ratios. Cross section are given for the collider energy, s=\sqrt{s} = 14 TeV. Event rates and significances are discussed for two possible values of integrated luminosity, 300 fb1^{-1} and 3000 fb1^{-1}.Comment: 17 pages 7 figures. arXiv admin note: substantial text overlap with arXiv:1205.404

    Monopole Flux State on the Pyrochlore Lattice

    Full text link
    The ground state of a spin 1/2 nearest neighbor quantum Heisenberg antiferromagnet on the pyrochlore lattice is investigated using a large NN SU(N) fermionic mean field theory. We find several mean field states, of which the state of lowest energy upon Gutzwiller projection, is a parity and time reversal breaking chiral phase with a unit monopole flux exiting each tetrahedron. This "monopole flux" state has a Fermi surface consisting of 4 lines intersecting at a point. At mean field the low-energy excitations about the Fermi surface are gapless spinons. An analysis using the projective symmetry group of this state suggests that the state is stable to small fluctuations which neither induce a gap, nor alter the unusual Fermi surface
    corecore