12,459 research outputs found

    Mapping the dynamic interactions between vortex species in highly anisotropic superconductors

    Full text link
    Here we use highly sensitive magnetisation measurements performed using a Hall probe sensor on single crystals of highly anisotropic high temperature superconductors Bi2Sr2CaCu2O8Bi_{2}Sr_{2}CaCu_{2}O_{8} to study the dynamic interactions between the two species of vortices that exist in such superconductors. We observe a remarkable and clearly delineated high temperature regime that mirrors the underlying vortex phase diagram. Our results map out the parameter space over which these dynamic interaction processes can be used to create vortex ratchets, pumps and other fluxonic devices.Comment: 7 pages, 3 figures, to be published in Supercond. Sci. Techno

    Critical Fields and Critical Currents in MgB2

    Full text link
    We review recent measurements of upper (Hc2) and lower (Hc1) critical fields in clean single crystals of MgB2, and their anisotropies between the two principal crystallographic directions. Such crystals are far into the "clean limit" of Type II superconductivity, and indeed for fields applied in the c-direction, the Ginzburg-Landau parameter k is only about 3, just large enough for Type II behaviour. Because m0Hc2 is so low, about 3 T for fields in the c-direction, MgB2 has to be modified for it to become useful for high-current applications. It should be possible to increase Hc2 by the introduction of strong electron scattering (but because of the electronic structure and the double gap that results, the scatterers will have to be chosen carefully). In addition, pinning defects on a scale of a few nm will have to be engineered in order to enhance the critical current density at high fields.Comment: BOROMAG Conference Invited paper. To appear in Supercond. Sci. Tec

    The role of spatial and temporal radiation deposition in inertial fusion chambers: the case of HiPER¿

    Full text link
    The first wall armour for the reactor chamber of HiPER will have to face short energy pulses of 5 to 20 MJ mostly in the form of x-rays and charged particles at a repetition rate of 5–10 Hz. Armour material and chamber dimensions have to be chosen to avoid/minimize damage to the chamber, ensuring the proper functioning of the facility during its planned lifetime. The maximum energy fluence that the armour can withstand without risk of failure, is determined by temporal and spatial deposition of the radiation energy inside the material. In this paper, simulations on the thermal effect of the radiation–armour interaction are carried out with an increasing definition of the temporal and spatial deposition of energy to prove their influence on the final results. These calculations will lead us to present the first values of the thermo-mechanical behaviour of the tungsten armour designed for the HiPER project under a shock ignition target of 48 MJ. The results will show that only the crossing of the plasticity limit in the first few micrometres might be a threat after thousands of shots for the survivability of the armour

    Making an impression: error location and repertoire features affect performance quality rating processes

    Get PDF
    This article examines the effects of composition length, familiarity, and likeability—as well as the location of performance errors—on the process of forming performance quality ratings. Five piano works by Chopin and a twentieth-century composer were cho- sen to vary by length and familiarity. Three of these pieces were then manipulated to contain performance errors in the opening material, and two of those the same error at the recapitulation. Forty-two musicians provided continuous quality evaluations and final quality ratings of the performances, hearing one version of each piece. The results showed that familiarity had no effect within works of a well-known composer, but times to first and final decision were significantly extended for an unfamiliar work of an unfamiliar composer. A shorter piece led to a shorter time to first decision. An error at the beginning of a performance caused a shorter time to first decision and lower initial and final ratings, where the same error at the recapitulation did not have a significant effect on the final judgment, despite causing a temporary negative drop. These findings demonstrate how evaluators’ knowledge of a work can affect their rating process and the importance of making a strong first impression in performance

    Effective Vortex Pinning in MgB2 thin films

    Full text link
    We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with small grain size providing enhanced pinning at grain boundaries without degradation of Tc. The PLD process produces films with structural disorder on a scale less that the coherence length that further improves pinning, but also depresses Tc

    Particle phenomenology on noncommutative spacetime

    Full text link
    We introduce particle phenomenology on the noncommutative spacetime called the Groenewold-Moyal plane. The length scale of spcetime noncommutativity is constrained from the CPT violation measurements in K0Kˉ0K^{0}-\bar{K}^{0} system and g2g-2 difference of μ+μ\mu^+ - \mu^-. The K0Kˉ0K^{0}-\bar{K}^{0} system provides an upper bound on the length scale of spacetime noncommutativity of the order of 1032m10^{-32} \textrm{m}, corresponding to a lower energy bound EE of the order of E1016GeVE \gtrsim 10^{16}\textrm{GeV}. The g2g-2 difference of μ+μ\mu^+ - \mu^- constrains the noncommutativity length scale to be of the order of 1020m10^{-20} \textrm{m}, corresponding to a lower energy bound EE of the order of E103GeVE \gtrsim 10^{3}\textrm{GeV}. We also present the phenomenology of the electromagnetic interaction of electrons and nucleons at the tree level in the noncommutative spacetime. We show that the distributions of charge and magnetization of nucleons are affected by spacetime noncommutativity. The analytic properties of electromagnetic form factors are also changed and it may give rise to interesting experimental signals.Comment: 10 pages, 3 figures. Published versio

    First order magnetic transition in CeFe2_2 alloys: Phase-coexistence and metastability

    Full text link
    First order ferromagnetic (FM) to antiferromagnetic (AFM) phase transition in doped-CeFe2_2 alloys is studied with micro-Hall probe technique. Clear visual evidence of magnetic phase-coexistence on micrometer scales and the evolution of this phase-coexistence as a function of temperature, magnetic field and time across the first order FM-AFM transition is presented. Such phase-coexistence and metastability arise as natural consequence of an intrinsic disorder-influenced first order transition. Generality of this phenomena involving other classes of materials is discussed.Comment: 11 pages of text and 3 figure

    Dynamic interactions between pancake vortex stacks and Josephson vortices in Bi2Sr2CaCu2O8 single crystals: relaxation and ratchets

    Full text link
    We present a detailed study of the dynamic interactions between Josephson vortices and stacks of pancake vortices in a Bi2Sr2CaCu2O8 single crystal, obtained by measuring the effect of applied inplane magnetic field pulses on the c-axis magnetisation. The predominant interaction is to relax the system towards equilibrium. However, using a highly sensitive AC technique we are able to measure also the forces acting to drive the system away from equilibrium, consistent with the existence of dragging interactions between the Josephson and pancake systems. Such forces were discussed recently as the basis of possible flux ratchet devices.Comment: 4 pages, 4 figure

    A pharmacokinetic model of inhaled methanol in humans and comparison to methanol disposition in mice and rats.

    Get PDF
    We estimated kinetic parameters associated with methanol disposition in humans from data reported in the literature. Michaelis-Menten elimination parameters (Vmax = 115 mg/L/hr; Km = 460 mg/L) were selected for input into a semi-physiologic pharmacokinetic model. We used reported literature values for blood or urine methanol concentrations in humans and nonhuman primates after methanol inhalation as input to an inhalation disposition model that evaluated the absorption of methanol, expressed as the fraction of inhaled methanol concentration that was absorbed (phi). Values of phi for nonexercising subjects typically varied between 0.64 and 0.75; 0.80 was observed to be a reasonable upper boundary for fractional absorption. Absorption efficiency in exercising subjects was lower than that in resting individuals. Incorporation of the kinetic parameters and phi into a pharmacokinetic model of human exposure to methanol, compared to a similar analysis in rodents, indicated that following an 8-hr exposure to 5000 ppm of methanol vapor, blood methanol concentrations in the mouse would be 13- to 18-fold higher than in humans exposed to the same methanol vapor concentration; blood methanol concentrations in the rat under similar conditions would be 5-fold higher than in humans. These results demonstrate the importance in the risk assessment for methanol of basing extrapolations from rodents to humans on actual blood concentrations rather than on methanol vapor exposure concentrations
    corecore